Tìm hệ số của x^7 trong khai triển nhị thức Niu – Tơn của ( x^2 + 2/x)^8
Tìm hệ số của \[{x^7}\] trong khai triển nhị thức Niu – Tơn của \[{\left( {{x^2} + \frac{2}{x}} \right)^8}\].
Phương pháp:
Sử dụng khai triển nhị thức Niu-tơn: \[{\left( {a + b} \right)^n} = \sum\limits_{k = 0}^n {C_n^k{a^{n - k}}{b^k}} \]
Cách giải:
Ta có: \[{\left( {{x^2} + \frac{2}{x}} \right)^8} = \sum\limits_{k = 0}^8 {C_8^k{{\left( {{x^2}} \right)}^{8 - k}}{{\left( {\frac{2}{x}} \right)}^k}} = \sum\limits_{k = 0}^8 {C_8^k{2^k}{x^{16 - 2k}}{x^{ - k}}} = \sum\limits_{k = 0}^8 {C_8^k{2^k}{x^{16 - 3k}}} \]
Số hạng chứa \[{x^7}\] ứng với \[16 - 3k = 7 \Leftrightarrow k = 3\left( {tm} \right)\].
Vậy hệ số của \[{x^7}\] trong khai triển trên là \[C_8^3{.2^3} = 448\].