Tìm hệ số của x^3 trong khai triển của biểu thức ( 1 - 2x )^8    A. 448.    B. 56.    C. - 56   D. - 448

Tìm hệ số của \[{x^3}\] trong khai triển của biểu thức \({\left( {1 - 2x} \right)^8}\)
A. 448.
B. 56.
C. \[ - 56\]
D. \[ - 448\]

Trả lời

Đáp án D

Phương pháp

Sử dụng khai triển nhị thức Niu-ton: \[{\left( {a - b} \right)^n} = \sum\limits_{k = 0}^n {C_n^k{a^{n - k}}{b^k}} \]

Từ đó tìm hệ số của \[{x^3}\] trong khai triển.

Cách giải:

Ta có: \[{\left( {1 - 2x} \right)^8} = \sum\limits_{k = 0}^8 {C_8^k{{\left( { - 2x} \right)}^k}} = \sum\limits_{k = 0}^8 {C_8^k{{\left( { - 2} \right)}^k}} {x^k}\].

Số hạng chứa \[{x^3}\] ứng với \[k = 3\].

Suy ra hệ số cần tìm là: \[C_8^3.{\left( { - 2} \right)^3} = - 448\].

Câu hỏi cùng chủ đề

Xem tất cả