Tìm các giới hạn sau: a) lim n đến + vô cùng n^2+ n + 1/2n^2 + 1; b) lim n đến + vô cùng ( căn bậc hai của n^2 + 2n - n).
Tìm các giới hạn sau:
a) lim;
b) \mathop {\lim }\limits_{n \to + \infty } \left( {\sqrt {{n^2} + 2n} - n} \right).
Tìm các giới hạn sau:
a) lim;
b) \mathop {\lim }\limits_{n \to + \infty } \left( {\sqrt {{n^2} + 2n} - n} \right).
Lời giải:
a) \mathop {\lim }\limits_{n \to + \infty } \frac{{{n^2} + n + 1}}{{2{n^2} + 1}} = \mathop {\lim }\limits_{n \to + \infty } \frac{{{n^2}\left( {1 + \frac{1}{n} + \frac{1}{{{n^2}}}} \right)}}{{{n^2}\left( {2 + \frac{1}{{{n^2}}}} \right)}} = \mathop {\lim }\limits_{n \to + \infty } \frac{{1 + \frac{1}{n} + \frac{1}{{{n^2}}}}}{{2 + \frac{1}{{{n^2}}}}} = \frac{1}{2}.
b) \mathop {\lim }\limits_{n \to + \infty } \left( {\sqrt {{n^2} + 2n} - n} \right) = \mathop {\lim }\limits_{n \to + \infty } \frac{{\left( {{n^2} + 2n} \right) - {n^2}}}{{\sqrt {{n^2} + 2n} + n}}
= \mathop {\lim }\limits_{n \to + \infty } \frac{{2n}}{{\sqrt {{n^2}\left( {1 + \frac{2}{n}} \right)} + n}} = \mathop {\lim }\limits_{n \to + \infty } \frac{{2n}}{{n\sqrt {1 + \frac{2}{n}} + n}}
= \mathop {\lim }\limits_{n \to + \infty } \frac{{2n}}{{n\left( {\sqrt {1 + \frac{2}{n}} + 1} \right)}} = \mathop {\lim }\limits_{n \to + \infty } \frac{2}{{\sqrt {1 + \frac{2}{n}} + 1}} = \frac{2}{{\sqrt 1 + 1}} = 1.