Cho tam giác vuông ABC vuông tại A, có AB = h và góc B bằng α (H.5.3). Từ A kẻ AA1 ⊥ BC, từ A1 kẻ A1A2 ⊥ AC, sau đó lại kẻ A2A3 ⊥ BC. Tiếp tục quá trình trên, ta được đường gấp khúc vô hạn AA
Lời giải:
Tam giác AA1B vuông tại A1 có AB = h và \(\widehat B = \alpha \).
Do đó, AA1 = AB sinB = h sin α.
Ta có: \(\widehat B + \widehat {BA{A_1}} = 90^\circ \) và \[\widehat {{A_1}A{A_2}} + \widehat {BA{A_1}} = 90^\circ \], suy ra \[\widehat {{A_1}A{A_2}} = \widehat B = \alpha \].
Tam giác AA1A2 vuông tại A2 nên A1A2 = AA1 sin\[\widehat {{A_1}A{A_2}}\] = h sin α . sin α = h sin2 α.
Vì AB ⊥ AC và A1A2 ⊥ AC nên AB // A1A2, suy ra \(\widehat {{A_2}{A_1}{A_3}} = \widehat B = \alpha \) (2 góc đồng vị).
Tam giác A1A2A3 vuông tại A3 nên A2A3 = A1A2 . sin\(\widehat {{A_2}{A_1}{A_3}}\) = h sin2 α . sin α = h sin3 α.
Vì AA1 ⊥ BC và A2A3 ⊥ BC nên AA1 // A2A3, suy ra \(\widehat {{A_3}{A_2}{A_4}} = \widehat {{A_1}A{A_2}} = \alpha \).
Tam giác A2A3A4 vuông tại A4 nên A3A4 = A2A3 . sin\(\widehat {{A_3}{A_2}{A_4}}\) = h sin3 α . sin α = h sin4 α.
Cứ tiếp tục như vậy, ta xác định được An – 1An = h sinn α.
Ta có: AA1A2A3... = AA1 + A1A2 + A2A3 + ... + An – 1An + ...
= h sin α + h sin2 α + h sin3 α + ... + h sinn α + ...
Vì góc B là góc nhọn nên sin B = sin α < 1, do đó |sin α| < 1.
Khi đó, độ dài của đường gấp khúc vô hạn AA1A2A3... là tổng của cấp số nhân lùi vô hạn với số hạng đầu u1 = h sin α và công bội q = sin α.
Do đó, AA1A2A3... = \(\frac{{{u_1}}}{{1 - q}} = \frac{{h\sin \alpha }}{{1 - \sin \alpha }}\).