Tìm các giá trị của tham số m để phương trình sin ^6x + cos ^6x = cos ^22x + m có nghiệm x [ 0; pi /8] A. 0 nhỏ hơn bằng m nhỏ hơn bằng 1/8 B. - 1/8 nhỏ hơn bằng m nhỏ hơn bằng 1/8 C. m
Đáp án A
Phương pháp:
\({\sin ^6}x + {\cos ^6}x = {\left( {{{\sin }^2}x + {{\cos }^2}x} \right)^3} - 3{\sin ^2}x.{\cos ^2}x.\left( {{{\sin }^2}x + {{\cos }^2}x} \right) = 1 - 3{\sin ^2}x.{\cos ^2}x\)
\({\sin ^2}x = \frac{{1 - \cos 2x}}{2};\,\,{\cos ^2}x = \frac{{1 + \cos 2x}}{2}\)
Cách giải:
Ta có: \({\sin ^6}x + {\cos ^6}x = {\cos ^2}2x + m \Leftrightarrow 1 - 3{\sin ^2}x.{\cos ^2}x = {\cos ^2}2x + m \Leftrightarrow 1 - \frac{3}{4}{\sin ^2}2x = {\cos ^2}2x + m\)
\( \Leftrightarrow 1 - \frac{3}{4}.\frac{{1 - \cos 4x}}{2} = \frac{{1 + \cos 4x}}{2} + m \Leftrightarrow 8 - 3 + 3\cos 4x = 4 + 4\cos 4x + 8m \Leftrightarrow \cos 4x = 1 - 8m\)
Do \(x \in \left[ {0;\,\,\frac{\pi }{8}} \right] \Rightarrow 4x \in \left[ {0;\,\,\frac{\pi }{2}} \right] \Rightarrow 0 \le \cos 4x \le 1\).
Để phương trình đã cho có nghiệm thì \(0 \le 1 - 8m \le 1 \Leftrightarrow 0 \le m \le \frac{1}{8}\).