Tìm bậc, hệ số cao nhất và hệ số tự do của mỗi đa thức sau: P(x) = (-2.x^2 - 3.x + x - 1).(3.x^2 - x - 2)

Bài 2 trang 63 Toán 7 Tập 2:

Tìm bậc, hệ số cao nhất và hệ số tự do của mỗi đa thức sau:

a) P(x) = (-2x2 - 3x + x - 1)(3x2 - x - 2);

b) Q(x) = (x5 - 5)(-2x6 - x3 + 3).

Trả lời

a) Ta thực hiện nhân và thu gọn rồi sắp xếp đa thức theo số mũ giảm dần của biến:

P(x) = (-2x2 - 3x + x - 1)(3x2 - x - 2)

= [-2x2 + (-3x + x) - 1].(3x2 - x - 2)

= (-2x2 - 2x - 1)(3x2 - x - 2)

= -2x2.3x2 - (-2x2).x - (-2x2).2 - 2x.3x2 - 2x.(-x) - 2x.(-2) - 1.3x2 - 1.(-x) - 1.(-2)

= -6x4 + 2x3 + 4x2 - 6x3 + 2x2 + 4x - 3x2 + x + 2

= -6x4 + (2x3 - 6x3) + (4x2 + 2x2 - 3x2) + (4x + x) + 2

= -6x4 + (2 – 6)x3 + (4 + 2 – 3)x2 + (4 + 1)x + 2

= -6x4 - 4x3 + 3x2 + 5x + 2

Vậy đa thức P(x) có bậc bằng 4, hệ số cao nhất bằng -6 và hệ số tự do bằng 2.

b) Ta thực hiện nhân và thu gọn rồi sắp xếp đa thức theo số mũ giảm dần của biến:

Q(x) = (x5 - 5)(-2x6 - x3 + 3)

= x5 . (-2x6) - x5 . x3 + x5 . 3 - 5 . (-2x6) - 5 . (-x3) - 5 . 3

= -2x11 - x8 + 3x5 + 10x6 + 5x3 - 15

= -2x11 - x8 + 10x6 + 3x5 + 5x3 - 15

Khi đó đa thức Q(x) có bậc bằng 11, hệ số cao nhất bằng -2 và hệ số tự do bằng -15.

Xem thêm lời giải bài tập Toán lớp 7 Cánh diều hay, chi tiết khác:

Bài 2: Đa thức một biến. Nghiệm của đa thức một biến

Bài 3: Phép cộng, phép trừ đa thức một biến

Bài 4: Phép nhân đa thức một biến

Bài 5: Phép chia đa thức một biến

Bài tập cuối chương 6

Bài 1: Tổng các góc của một tam giác

Câu hỏi cùng chủ đề

Xem tất cả