Tia phân giác của góc BAC cắt DE tại M và cắt BC tại N. Chứng minh rằng

Cho tam giác ABC có ba góc nhọn. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho \[\widehat {ADE} = \widehat {ACB}\].

Tia phân giác của \[\widehat {BAC}\] cắt DE tại M và cắt BC tại N.

Chứng minh rằng ME . NC = MD . NB.

Trả lời
Tia phân giác của góc BAC cắt DE tại M và cắt BC tại N.  Chứng minh rằng  (ảnh 1)

Ta có ∆AED ∆ABC suy ra \[\frac{{AE}}{{AB}} = \frac{{AD}}{{AC}}\] hay \[\frac{{AE}}{{AD}} = \frac{{AB}}{{AC}}\] (1)

Vì AM là tia  phân giác của \[\widehat {DAE}\] nên \[\frac{{ME}}{{MD}} = \frac{{AE}}{{AD}}\]                   (2)

Vì AN là tia phân giác của \[\widehat {BAC}\] nên \[\frac{{NB}}{{NC}} = \frac{{AB}}{{AC}}\]                             (3)

Từ (1); (2) và (3) suy ra \[\frac{{ME}}{{MD}} = \frac{{NB}}{{NC}}\] hay ME . NC = MD . NB (đpcm).

Câu hỏi cùng chủ đề

Xem tất cả