Tập giá trị của hàm số y = 2sin 2x + cos 2x/sin 2x - cos 2x + 3 có tất cả bao nhiêu giá trị nguyên? A. 4. B. 2. C. 3. D. 1.
Đáp án B
Phương pháp:
Phương trình dạng: \(a\sin x + b\cos x = c\) có nghiệm \( \Leftrightarrow {a^2} + {b^2} \ge {c^2}\)
Cách giải:
TXĐ: \(D = \mathbb{R}\)
Gọi \({y_0}\) là một giá trị của hàm số \(y = \frac{{2\sin 2x + \cos 2x}}{{\sin 2x - \cos 2x + 3}}\), khi đó tồn tại \({x_0}\) để \({y_0} = \frac{{2\sin 2{x_0} + \cos 2{x_0}}}{{\sin 2{x_0} - \cos 2{x_0} + 3}}\)
\( \Leftrightarrow {y_0}.\left( {\sin 2{x_0} - \cos 2{x_0} + 3} \right) = 2\sin 2{x_0} + \cos 2{x_0} \Leftrightarrow \left( {{y_0} - 2} \right).\sin 2{x_0} - \left( {{y_0} + 1} \right).\cos 2{x_0} = - 3{y_0}\) (*)
(*) tồn tại \( \Leftrightarrow {\left( {{y_0} - 2} \right)^2} + {\left( {{y_0} + 1} \right)^2} \ge {\left( {3{y_0}} \right)^2} \Leftrightarrow 7y_0^2 + 2{y_0} - 5 \le 0 \Leftrightarrow - 1 \le {y_0} \le \frac{5}{7}\)
Þ Tập giá trị của hàm số \(y = \frac{{2\sin 2x + \cos 2x}}{{\sin 2x - \cos 2x + 3}}\) là \(T = \left[ { - 1;\,\,\frac{5}{7}} \right]\).
Tập giá trị T có các giá trị nguyên là: -1; 0 (hai giá trị)