Câu hỏi:
19/01/2024 54Tam giác ABC có với BC = a, AC = b, AB = c thì câu nào sau đây là đúng?
A. a2 = b2 + c2 ‒ bc;
B. a2 = b2 + c2 ‒ 3bc;
C. a2 = b2 + c2 + bc;
D. a2 = b2 + c2 + 3bc.
Trả lời:
Hướng dẫn giải
Đáp án đúng là: C
Áp dụng định lí côsin trong tam giác ABC ta có:
a2 = b2 + c2 ‒ 2.bc.cosA
Þ a2 = b2 + c2 ‒ 2.bc.cos120°
Þ a2 = b2 + c2 + bc.
Vậy a2 = b2 + c2 + bc.
Hướng dẫn giải
Đáp án đúng là: C
Áp dụng định lí côsin trong tam giác ABC ta có:
a2 = b2 + c2 ‒ 2.bc.cosA
Þ a2 = b2 + c2 ‒ 2.bc.cos120°
Þ a2 = b2 + c2 + bc.
Vậy a2 = b2 + c2 + bc.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong khi khai quật một ngôi mộ cổ, các nhà khảo cổ học đã tìm được một chiếc đĩa cổ hình tròn bị vỡ, các nhà khảo cổ muốn khôi phục hình dạng chiếc đĩa này. Để xác định bán kính của chiếc đĩa, các nhà khảo cổ lấy 3 điểm trên chiếc đĩa và tiến hành đo đạc thu được kết quả như hình vẽ (AB = 4,3 cm; BC = 3,7 cm; CA = 7,5 cm).
Bán kính của chiếc đĩa này bằng (kết quả làm tròn đến chữ số thập phân thứ hai):
Câu 2:
Cho tam giác ABC nội tiếp đường tròn bán kính R, AB = R, Tính số đo của biết là góc tù.
Cho tam giác ABC nội tiếp đường tròn bán kính R, AB = R, Tính số đo của biết là góc tù.
Câu 3:
Tam giác ABC có BC = a, CA = b, AB = c và có diện tích S. Nếu tăng cạnh BC lên 2 lần đồng thời tăng cạnh AC lên 3 lần và giữ nguyên độ lớn của góc C thì khi đó diện tích của tam giác mới được tạo nên bằng:
Tam giác ABC có BC = a, CA = b, AB = c và có diện tích S. Nếu tăng cạnh BC lên 2 lần đồng thời tăng cạnh AC lên 3 lần và giữ nguyên độ lớn của góc C thì khi đó diện tích của tam giác mới được tạo nên bằng:
Câu 5:
Tam giác ABC có ba cạnh lần lượt là: 2, 3, 4. Góc nhỏ nhất của tam giác có côsin bằng bao nhiêu?
Tam giác ABC có ba cạnh lần lượt là: 2, 3, 4. Góc nhỏ nhất của tam giác có côsin bằng bao nhiêu?
Câu 6:
Một tam giác có ba cạnh là 52, 56, 60. Gọi R, r lần lượt là bán kính đường tròn ngoại tiếp, nội tiếp tam giác. Khi đó R. r bằng:
Một tam giác có ba cạnh là 52, 56, 60. Gọi R, r lần lượt là bán kính đường tròn ngoại tiếp, nội tiếp tam giác. Khi đó R. r bằng:
Câu 7:
Tam giác ABC vuông tại A có AB = AC = 30 cm. Hai đường trung tuyến BE và CF cắt nhau tại G. Diện tích tam giác GEC là:
Tam giác ABC vuông tại A có AB = AC = 30 cm. Hai đường trung tuyến BE và CF cắt nhau tại G. Diện tích tam giác GEC là:
Câu 9:
Cho tam giác ABC. Giá trị biểu thức sinA.cos(B + C) + cosA.sin(B + C) là:
Cho tam giác ABC. Giá trị biểu thức sinA.cos(B + C) + cosA.sin(B + C) là:
Câu 10:
Cho góc α (0° ≤ α ≤ 180°). Trong các khẳng định sau, khẳng định nào sai?
Cho góc α (0° ≤ α ≤ 180°). Trong các khẳng định sau, khẳng định nào sai?
Câu 11:
Tam giác ABC vuông cân tại A và nội tiếp trong đường tròn tâm O, bán kính R. Gọi r là bán kính đường tròn nội tiếp tam giác ABC. Tỉ số là:
Tam giác ABC vuông cân tại A và nội tiếp trong đường tròn tâm O, bán kính R. Gọi r là bán kính đường tròn nội tiếp tam giác ABC. Tỉ số là:
Câu 12:
Cho tam giác ABC có BC = a, CA = b, AB = c. Mệnh đề nào sau đây là đúng?
Câu 13:
Tam giác ABC có góc B tù, AB = 3, AC = 4 và có diện tích bằng . Số đo góc A là:
Tam giác ABC có góc B tù, AB = 3, AC = 4 và có diện tích bằng . Số đo góc A là:
Câu 15:
Cho tam giác ABC có AB = 8, AC = 9, BC = 10. Tam giác ABC là tam giác:
Cho tam giác ABC có AB = 8, AC = 9, BC = 10. Tam giác ABC là tam giác: