Số nghiệm của phương trình sin ^2x + cos 2x =  - cos ^2x trên đoạn { - pi /2; 5pi ] là:    A. 5     B. 6   C. 7   D. 8

Số nghiệm của phương trình \[{\sin ^2}x + \cos 2x = - {\cos ^2}x\] trên đoạn \[\left[ { - \frac{\pi }{2};5\pi } \right]\] là:
A. 5
B. 6
C. 7
D. 8

Trả lời

Đáp án A

Phương pháp:

+ Sử dụng: \[{\sin ^2}x + {\cos ^2}x = 1\,\,\,\forall x \in \mathbb{R}\].

+ Giải phương trình lượng giác cơ bản.

+ Tìm các giá trị của \[k \in \mathbb{Z}\] để \[x \in \left[ { - \frac{\pi }{2};5\pi } \right]\].

Cách giải:

\[{\sin ^2}x + \cos 2x = - {\cos ^2}x \Leftrightarrow {\sin ^2}x + {\cos ^2}x + \cos 2x = 0\]

\[ \Leftrightarrow 1 + \cos 2x = 0 \Leftrightarrow \cos 2x = - 1 \Leftrightarrow 2x = \pi + k2\pi \Leftrightarrow x = \frac{\pi }{2} + k\pi \left( {k \in \mathbb{Z}} \right)\]

\[x \in \left[ { - \frac{\pi }{2};5\pi } \right] \Rightarrow - \frac{\pi }{2} \le \frac{\pi }{2} + k\pi \le 5\pi \Leftrightarrow - \frac{1}{2} \le \frac{1}{2} + k \le 5 \Leftrightarrow - \frac{1}{5} \le k \le \frac{9}{2}\]

\[k \in \mathbb{Z} \Rightarrow k \in \left\{ {0;1;2;3;4} \right\} \Rightarrow \] Phương trình ban đầu có 5 nghiệm thỏa mãn.

Câu hỏi cùng chủ đề

Xem tất cả