Số nghiệm của phương trình căn bậc hai của 2 cos ( x + pi /3) = 1 với 0 nhỏ hơn hoặc bằng x nhỏ hơn hoặc bằng 2pi là A. 3 B. 2 C. 1 D. 4
Đáp án B
Phương pháp:
Giải phương trình lượng giác cơ bản: \[\cos x = \cos a \Leftrightarrow \left[ \begin{array}{l}x = \alpha + k2\\x = - \alpha + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\]
Sau đó dựa vào điều kiện để tìm các giá trị x phù hợp
Cách giải:
Ta có: \[\sqrt 2 \cos \left( {x + \frac{\pi }{3}} \right) = 1 \Leftrightarrow \cos \left( {x + \frac{\pi }{3}} \right) = \frac{1}{{\sqrt 2 }}\]
\[ \Leftrightarrow \cos \left( {x + \frac{\pi }{3}} \right) = \cos \frac{\pi }{4} \Leftrightarrow \left[ \begin{array}{l}x + \frac{\pi }{3} = \frac{\pi }{4} + k2\pi \\x + \frac{\pi }{3} = - \frac{\pi }{4} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = - \frac{\pi }{{12}} + k2\pi \\x = - \frac{{7\pi }}{{12}} + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\]
Nếu \[x = - \frac{\pi }{{12}} + k2\pi \] thì \[x \in \left[ {0;\,\,2\pi } \right] \Rightarrow 0 \le - \frac{\pi }{{12}} + k2\pi \le 2\pi \Leftrightarrow \frac{1}{{24}} \le k \le \frac{{25}}{{24}} \Rightarrow k = 1 \Rightarrow x = \frac{{23\pi }}{{12}}\]
Nếu \[x = - \frac{{7\pi }}{{12}} + k2\pi \] thì \[x \in \left[ {0;\,\,2\pi } \right] \Rightarrow 0 \le - \frac{{7\pi }}{{12}} + k2\pi \le 2\pi \Leftrightarrow \frac{7}{{24}} \le k \le \frac{{31}}{{24}} \Rightarrow k = 1 \Rightarrow x = \frac{{17\pi }}{{12}}\]
Vậy có hai giá trị của x thỏa mãn đề bài.