Số nghiệm của phương trình 2cos x + 1 = 0 thuộc khoảng ( - pi ; pi ) là: A. 4. B. 2. C. 3. D. 5.
Đáp án D
Phương pháp:
- Giải phương trình lượng giác cơ bản: \(\cos x = \cos \alpha \Leftrightarrow x = \pm \alpha + k2\pi \left( {k \in \mathbb{Z}} \right)\).
- Tìm các nghiệm thuộc khoảng \(\left( { - \pi ;4\pi } \right)\).
Cách giải:
\(2\cos x + 1 = 0 \Leftrightarrow \cos x = - \frac{1}{2} \Leftrightarrow \left[ \begin{array}{l}x = \frac{{2\pi }}{3} + k2\pi \\x = - \frac{{2\pi }}{3} + k2\pi \end{array} \right.{\rm{ }}\left( {k \in \mathbb{Z}} \right)\).
+ Xét họ nghiệm \(x = \frac{{2\pi }}{3} + k2\pi \left( {k \in \mathbb{Z}} \right)\).
\(x \in \left( { - \pi ;4\pi } \right) \Leftrightarrow - \pi < \frac{{2\pi }}{3} + k2\pi < 4\pi \Leftrightarrow - \frac{5}{6} < k < \frac{5}{3}\).
Mà \(k \in \mathbb{Z} \Rightarrow k \in \left\{ {0;1} \right\} \Rightarrow x \in \left\{ {\frac{{2\pi }}{3};\frac{{8\pi }}{3}} \right\}\).
+ Xét họ nghiệm \(x = - \frac{{2\pi }}{3} + k2\pi \left( {k \in \mathbb{Z}} \right)\).
\(x \in \left( { - \pi ;4\pi } \right) \Leftrightarrow - \pi < - \frac{{2\pi }}{3} + k2\pi < 4\pi \Leftrightarrow - \frac{1}{6} < k < \frac{7}{3}\)
Mà \(k \in \mathbb{Z} \Rightarrow k \in \left\{ {0;1;2} \right\} \Rightarrow x \in \left\{ { - \frac{{2\pi }}{3};\frac{{4\pi }}{3};\frac{{10\pi }}{3}} \right\}\).
Vậy phương trình đã cho có 5 nghiệm thỏa mãn yêu cầu bài toán.