Nội dung thi đấu đôi nam nữ của giải bóng bàn cấp trường có 7 đội tham gia. Các đội thi đấu vòng tròn một lượt

Thực hành 4 trang 31 Toán lớp 10 Tập 2: Nội dung thi đấu đôi nam nữ của giải bóng bàn cấp trường có 7 đội tham gia. Các đội thi đấu vòng tròn một lượt.

Thực hành 4 trang 31 Toán lớp 10 Tập 2 Chân trời sáng | Giải Toán lớp 10

a) Nội dung này có tất cả bao nhiêu trận đấu?

b) Sau giải đấu, ba đội có thành tích tốt nhất sẽ được chọn đi thi đấu liên trường. Có bao nhiêu khả năng có thể xảy ra về ba đội được chọn đi thi đấu cấp liên trường?

Trả lời

a)

Cách 1: Có tất cả 7 đội tham gia và các đội thi đấu vòng tròn một lượt nên một đội sẽ thi đấu với 6 đội còn lại.

Đội 1 sẽ có 6 trận với 6 đội còn lại;

Đội 2 ngoài trận với đội 1 sẽ có thêm 5 trận với 5 đội còn lại;

Đội 3 ngoài trận với đội 1,2 sẽ có thêm 4 trận với 4 đội còn lại;

Đội 4 ngoài trận với đội 1, 2 và 3 sẽ có thêm 3 trận với 3 đội còn lại;

Đội 5 ngoài trận với đội 1, 2, 3 và 4 sẽ có thêm 2 trận với 2 đội còn lại;

Đội 6 ngoài trận với 5 đội trên sẽ có 1 trận với 1 đội còn lại.

Đội 7 đã thi đấu với tất cả 6 đội trên

Theo quy tắc cộng có 6 + 5 + 4 + 3 + 2 + 1 = 21 trận.

Vậy nội dung này có tất cả 21 trận đấu.

Cách 2: Các đội thi đấu vòng tròn từng đôi một nghĩa là số trận đấu giữa 7 đội tham gia là cách chọn ra 2 đội trong 7 đội. Do đó số trận đấu là tổ hợp chập 2 của 7:

C72=21 (trận).

b) Việc chọn ra ba đội có thành tích tốt nhất đi thi đấu cấp liên trường là tổ hợp chập 3 của 7. Do đó số khả năng có thể xảy ra về ba đội được chọn thi đấu cấp liên trường là:

C73=35 cách.

Vậy có tất cả 35 khả năng có thể xảy ra về ba đội được chọn thi đấu cấp liên trường.

Xem thêm lời giải bài tập SGK Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:

Bài tập cuối chương 7

Bài 1: Quy tắc cộng và quy tắc nhân

Bài 2: Hoán vị, chỉnh hợp và tổ hợp

Bài 3: Nhị thức Newton

Bài tập cuối chương 8

Bài 1: Toạ độ của vectơ

Câu hỏi cùng chủ đề

Xem tất cả