Nghiệm của phương trình tan x = t limits 3x là: A. x = kpi /2( k thuộc Z) B. x = kpi ( k thuộc Z) C. x = k2pi ( k thuộc Z) D. Kết quả khác
Đáp án B
Phương pháp:
Giải phương trình lượng giác cơ bản: \[\tan x = \tan \alpha \Leftrightarrow x = \alpha + k\pi \left( {k \in Z} \right).\]
Cách giải:
ĐK: \(\left\{ \begin{array}{l}\cos x \ne 0\\\cos 3x \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\cos x \ne 0\\4{\cos ^3}x - 3\cos x \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\cos x \ne 0\\4{\cos ^2}x - 3 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\cos x \ne 0\\\cos x \ne \pm \frac{{\sqrt 3 }}{2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ne \frac{\pi }{2} + k\pi \\x \ne \pm \frac{\pi }{6} + k2\pi \end{array} \right.\)
\(\tan x = {\mathop{\rm t}\nolimits} {\rm{an3}}x \Leftrightarrow 3x = x + k\pi \Leftrightarrow 2x = k\pi \Leftrightarrow x = \frac{{k\pi }}{2}\left( {k \in Z} \right).\)
Đối chiếu điều kiện ta có \(x = k\pi \left( {k \in Z} \right).\)
Chú ý: HS chú ý điều kiện của phương trình để loại nghiệm.