Nghiệm âm lớn nhất của phương trình sin x + cos x = 1 - 1/2sin 2x là    A. - 3pi /3   B. - 2pi   C. - pi /2   D. - pi

Nghiệm âm lớn nhất của phương trình \[\sin x + \cos x = 1 - \frac{1}{2}\sin 2x\]
A. \[ - \frac{{3\pi }}{3}\]
B. \[ - 2\pi \]
C. \[ - \frac{\pi }{2}\]
D. \[ - \pi \]

Trả lời

Đáp án A

Phương pháp:

- Biến đổi phương trình về dạng phương trình đối xứng đối với sin và cos.

- Sử dụng phương pháp đặt ẩn phụ \[t = \sin x + \cos x\] để giải phương trình này.

Cách giải:

Ta có: \[\sin x + \cos x = 1 - \frac{1}{2}\sin 2x \Leftrightarrow \sin x + \cos x = 1 - \sin x\cos x\]

Đặt \[\sin x + \cos x = t\,\,\left( { - \sqrt 2 \le t \le \sqrt 2 } \right)\]\[ \Rightarrow \sin x\cos x = \frac{{{t^2} - 1}}{2}\].

Khi đó phương trình trở thành:

\[t = 1 - \frac{{{t^2} - 1}}{2} = 0 \Leftrightarrow 2t + {t^2} - 1 - 2 = 0 \Leftrightarrow {t^2} + 2t - 3 = 0 \Leftrightarrow \left[ \begin{array}{l}t = 1 & \left( {tm} \right)\\t = - 3 & \left( {ktm} \right)\end{array} \right.\]

Suy ra \[\sin x + \cos x = 1 \Leftrightarrow \sqrt 2 \sin \left( {x + \frac{\pi }{4}} \right) = 1 \Leftrightarrow \sin \left( {x + \frac{\pi }{4}} \right) = \frac{1}{{\sqrt 2 }}\]

\[ \Leftrightarrow \sin \left( {x + \frac{\pi }{4}} \right) = \sin \frac{\pi }{4} \Leftrightarrow \left[ \begin{array}{l}x + \frac{\pi }{4} = \frac{\pi }{4} + k2\pi \\x + \frac{\pi }{4} = \frac{{3\pi }}{4} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = k2\pi \\x = \frac{\pi }{2} + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\]

Do x là nghiệm âm lớn nhất nên:

+ TH1: \[k2\pi < 0 \Leftrightarrow k < 0\mathop \Rightarrow \limits^{k \in \mathbb{Z}} k = - 1 \Rightarrow x = - 2\pi \]

+ TH2: \[\frac{\pi }{2} + k2\pi < 0 \Leftrightarrow k < - \frac{1}{4}\mathop \Rightarrow \limits^{k \in \mathbb{Z}} k = - 1 \Rightarrow x = - \frac{{3\pi }}{2}\]

Trong hai nghiệm \[ - 2\pi \]\[ - \frac{{3\pi }}{2}\] thì nghiệm âm lớn nhất là \[ - \frac{{3\pi }}{2}\].

Câu hỏi cùng chủ đề

Xem tất cả