Nếu các câu hỏi trong đề thi được chọn ngẫu nhiên. Tính xác suất để trong đề thi có đủ ba loại câu hỏi sao cho số câu dễ và câu trung bình bằng nhau.
51
23/04/2024
b) Nếu các câu hỏi trong đề thi được chọn ngẫu nhiên. Tính xác suất để trong đề thi có đủ ba loại câu hỏi sao cho số câu dễ và câu trung bình bằng nhau.
Trả lời
b) Nếu các câu hỏi trong đề thi được chọn ngẫu nhiên. Tính xác suất để trong đề thi có đủ ba loại câu hỏi sao cho số câu dễ và câu trung bình bằng nhau.
Phương pháp:
+ Tính số phần tử của không gian mẫu.
+ Tính số phần tử của biến cố.
+ Tính xác suất của biến cố.
Cách giải:
Chọn 6 câu bất kì trong 14 câu \[ \Rightarrow n\left( \Omega \right) = C_{14}^6\].
Gọi A là biến cố: “Trong đề thi có đủ ba loại câu hỏi sao cho số câu dễ và câu trung bình bằng nhau.”
Do đó trong đề thi phải có 2 dễ + 2 trung bình + 2 khó \[ \Rightarrow n\left( A \right) = C_6^2.C_5^2.C_3^2 = 450\]
Vậy \[P\left( A \right) = \frac{{450}}{{C_{14}^6}} = \frac{{150}}{{1001}}\].