Câu hỏi:
19/01/2024 64
Một nhà khoa học nghiên cứu về tác động phối hợp của vitamin A và vitamin B đối với cơ thể con người. Kết quả như sau:
- Một người có thể tiếp nhận được mỗi ngày không quá 600 đơn vị vitamin A và không quá 500 đơn vị vitamin B.
- Một người mỗi ngày cần từ 400 đến 1 000 đơn vị vitamin cả A và B.
Do tác động phối hợp của hai loại vitamin, mỗi ngày, số đơn vị vitamin B không ít hơn số đơn vị vitamin A nhưng không nhiều hơn ba lần số đơn vị vitamin A.
Biết giá một đơn vị vitamin A là 9 đồng và giá một đơn vị vitamin B là 7,5 đồng. Phương án dùng hai loại vitamin A, B thoả mãn các điều kiện trên để có số tiền phải trả là ít nhất là:
Một nhà khoa học nghiên cứu về tác động phối hợp của vitamin A và vitamin B đối với cơ thể con người. Kết quả như sau:
- Một người có thể tiếp nhận được mỗi ngày không quá 600 đơn vị vitamin A và không quá 500 đơn vị vitamin B.
- Một người mỗi ngày cần từ 400 đến 1 000 đơn vị vitamin cả A và B.
Do tác động phối hợp của hai loại vitamin, mỗi ngày, số đơn vị vitamin B không ít hơn số đơn vị vitamin A nhưng không nhiều hơn ba lần số đơn vị vitamin A.
Biết giá một đơn vị vitamin A là 9 đồng và giá một đơn vị vitamin B là 7,5 đồng. Phương án dùng hai loại vitamin A, B thoả mãn các điều kiện trên để có số tiền phải trả là ít nhất là:
A. 500 đơn vị vitamin A và 500 đơn vị vitamin B;
B. 600 đơn vị vitamin A và 400 đơn vị vitamin B;
C. 600 đơn vị vitamin A và 300 đơn vị vitamin B;
D. 100 đơn vị vitamin A và 300 đơn vị vitamin B.
Trả lời:
Hướng dẫn giải
Đáp án đúng là: D
Gọi x là số đơn vị vitamin A mỗi người tiếp nhận trong một ngày. (x ≥ 0)
Gọi y là số đơn vị vitamin A mỗi người tiếp nhận trong một ngày. (y ≥ 0)
Một người có thể tiếp nhận được mỗi ngày không quá 600 đơn vị vitamin A và không quá 500 đơn vị vitamin B nên x ≤ 600 và y ≤ 500.
Một người mỗi ngày cần từ 400 đến 1 000 đơn vị vitamin cả A và B nên:
400 ≤ x + y ≤ 1000.
Do tác động phối hợp của hai loại vitamin, mỗi ngày, số đơn vị vitamin B không ít hơn số đơn vị vitamin A nhưng không nhiều hơn ba lần số đơn vị vitamin A nên:
.
Ta có hệ bất phương trình giữa x và y:
Biểu diễn miền nghiệm của hệ bất phương trình:
- Biểu diễn miền nghiệm D1 của bất phương trình x ≤ 600:
+ Vẽ đường thẳng d1: x = 600 trên mặt phẳng tọa độ Oxy.
+ Thay x = 0, y = 0 vào bất phương trình ta được 0 ≤ 600 là mệnh đề đúng nên tọa độ điểm O(0; 0) thỏa mãn bất phương trình x ≤ 600.
Vậy miền nghiệm D1 của bất phương trình x ≤ 600 là nửa mặt phẳng bờ d1 (kể cả bờ d1) chứa điểm O.
* Tương tự ta biểu diễn các miền nghiệm:
- Miền nghiệm D2 của bất phương trình y ≤ 500: là nửa mặt phẳng bờ d2 (kể cả bờ d2: y = 500) chứa điểm O.
- Miền nghiệm D3 của bất phương trình x + y ≥ 400: là nửa mặt phẳng bờ d3 (kể cả bờ d3: x + y = 400) không chứa điểm O.
- Miền nghiệm D4 của bất phương trình x + y ≤ 1000: là nửa mặt phẳng bờ d4 (kể cả bờ d4: x + y = 1000) chứa điểm O.
- Miền nghiệm D5 của bất phương trình y ≥ x: là nửa mặt phẳng bờ d5 (kể cả bờ d5: ) chứa điểm M(0; 50).
- Miền nghiệm D6 của bất phương trình y ≤ 3x: là nửa mặt phẳng bờ d6 (kể cả bờ d6: y = 3x) không chứa điểm M (0; 50).
Ta có đồ thị sau:
Miền nghiệm của hệ bất phương trình là miền của đa giác ABCDEF với:
A(100; 300), B , C(500; 500), D(600, 400), E(600, 300), F
Số tiền trả cho x đơn vị vitamin A và y đơn vị vitamin B là: F (x; y) = 9x + 7,5y.
Để có số tiền phải trả là ít nhất thì F(x; y) phải nhỏ nhất.
Tại A(100; 300): F = 9.100 + 7,5. 300 = 3150;
Tại B : F = 9. + 7,5. 500 = 5250;
Tại C(500; 500): F = 9. 500 + 7,5. 500 = 8250;
Tại D(600, 400): F = 9. 600 + 7,5. 400 = 8400;
Tại E(600, 300): F = 9. 600 + 7,5. 300 = 7650;
Tại F : F = 9. + 7,5. = 3400;
Vậy F(x; y) nhỏ nhất là 3150 khi x =100 và y = 300.
Vậy mỗi người sẽ dùng 100 đơn vị vitamin A và 300 đơn vị vitamin B để đảm bảo các điều kiện số lượng sử dụng và chi phí phải trả là ít nhất.
Hướng dẫn giải
Đáp án đúng là: D
Gọi x là số đơn vị vitamin A mỗi người tiếp nhận trong một ngày. (x ≥ 0)
Gọi y là số đơn vị vitamin A mỗi người tiếp nhận trong một ngày. (y ≥ 0)
Một người có thể tiếp nhận được mỗi ngày không quá 600 đơn vị vitamin A và không quá 500 đơn vị vitamin B nên x ≤ 600 và y ≤ 500.
Một người mỗi ngày cần từ 400 đến 1 000 đơn vị vitamin cả A và B nên:
400 ≤ x + y ≤ 1000.
Do tác động phối hợp của hai loại vitamin, mỗi ngày, số đơn vị vitamin B không ít hơn số đơn vị vitamin A nhưng không nhiều hơn ba lần số đơn vị vitamin A nên:
.
Ta có hệ bất phương trình giữa x và y:
Biểu diễn miền nghiệm của hệ bất phương trình:
- Biểu diễn miền nghiệm D1 của bất phương trình x ≤ 600:
+ Vẽ đường thẳng d1: x = 600 trên mặt phẳng tọa độ Oxy.
+ Thay x = 0, y = 0 vào bất phương trình ta được 0 ≤ 600 là mệnh đề đúng nên tọa độ điểm O(0; 0) thỏa mãn bất phương trình x ≤ 600.
Vậy miền nghiệm D1 của bất phương trình x ≤ 600 là nửa mặt phẳng bờ d1 (kể cả bờ d1) chứa điểm O.
* Tương tự ta biểu diễn các miền nghiệm:
- Miền nghiệm D2 của bất phương trình y ≤ 500: là nửa mặt phẳng bờ d2 (kể cả bờ d2: y = 500) chứa điểm O.
- Miền nghiệm D3 của bất phương trình x + y ≥ 400: là nửa mặt phẳng bờ d3 (kể cả bờ d3: x + y = 400) không chứa điểm O.
- Miền nghiệm D4 của bất phương trình x + y ≤ 1000: là nửa mặt phẳng bờ d4 (kể cả bờ d4: x + y = 1000) chứa điểm O.
- Miền nghiệm D5 của bất phương trình y ≥ x: là nửa mặt phẳng bờ d5 (kể cả bờ d5: ) chứa điểm M(0; 50).
- Miền nghiệm D6 của bất phương trình y ≤ 3x: là nửa mặt phẳng bờ d6 (kể cả bờ d6: y = 3x) không chứa điểm M (0; 50).
Ta có đồ thị sau:
Miền nghiệm của hệ bất phương trình là miền của đa giác ABCDEF với:
A(100; 300), B , C(500; 500), D(600, 400), E(600, 300), F
Số tiền trả cho x đơn vị vitamin A và y đơn vị vitamin B là: F (x; y) = 9x + 7,5y.
Để có số tiền phải trả là ít nhất thì F(x; y) phải nhỏ nhất.
Tại A(100; 300): F = 9.100 + 7,5. 300 = 3150;
Tại B : F = 9. + 7,5. 500 = 5250;
Tại C(500; 500): F = 9. 500 + 7,5. 500 = 8250;
Tại D(600, 400): F = 9. 600 + 7,5. 400 = 8400;
Tại E(600, 300): F = 9. 600 + 7,5. 300 = 7650;
Tại F : F = 9. + 7,5. = 3400;
Vậy F(x; y) nhỏ nhất là 3150 khi x =100 và y = 300.
Vậy mỗi người sẽ dùng 100 đơn vị vitamin A và 300 đơn vị vitamin B để đảm bảo các điều kiện số lượng sử dụng và chi phí phải trả là ít nhất.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Phần không tô đậm trong hình vẽ dưới đây biểu diễn tập nghiệm của hệ bất phương trình nào trong các hệ bất phương trình sau?
Phần không tô đậm trong hình vẽ dưới đây biểu diễn tập nghiệm của hệ bất phương trình nào trong các hệ bất phương trình sau?
Câu 2:
Miền nghiệm của bất phương trình 2(x + 1) – 3(y + 2) > 3(2x + 2y) được biểu diễn phân cách bởi đường thẳng nào sau đây?
Miền nghiệm của bất phương trình 2(x + 1) – 3(y + 2) > 3(2x + 2y) được biểu diễn phân cách bởi đường thẳng nào sau đây?
Câu 4:
Hệ bất phương trình nào sau đây là hệ bất phương trình bậc nhất hai ẩn?
Câu 5:
Điểm nào sau đây thuộc miền nghiệm của bất phương trình bậc nhất hai ẩn 3x + 2(y + 3) ≥ 4(x + 1) – y + 3 trên mặt phẳng tọa độ Oxy?
Câu 6:
Miền nghiệm của bất phương trình: 3(x – 1) + 4(y – 2) < 5x – 3 là nửa mặt phẳng chứa điểm:
Miền nghiệm của bất phương trình: 3(x – 1) + 4(y – 2) < 5x – 3 là nửa mặt phẳng chứa điểm:
Câu 7:
Một công ty TNHH trong một đợt quảng cáo và bán khuyến mãi hàng hóa (một sản phẩm mới của công ty) cần thuê xe để chở trên 140 người và trên 9 tấn hàng. Nơi thuê chỉ có hai loại xe A và B. Trong đó loại xe A có 10 chiếc, loại xe B có 9 chiếc. Một chiếc xe loại A cho thuê với giá 4 triệu, loại B giá 3 triệu. Hỏi phải thuê bao nhiêu xe mỗi loại để chi phí vận chuyển là thấp nhất. Biết rằng xe A chỉ chở tối đa 20 người và 0,6 tấn hàng. Xe B chở tối đa 10 người và 1,5 tấn hàng.
Một công ty TNHH trong một đợt quảng cáo và bán khuyến mãi hàng hóa (một sản phẩm mới của công ty) cần thuê xe để chở trên 140 người và trên 9 tấn hàng. Nơi thuê chỉ có hai loại xe A và B. Trong đó loại xe A có 10 chiếc, loại xe B có 9 chiếc. Một chiếc xe loại A cho thuê với giá 4 triệu, loại B giá 3 triệu. Hỏi phải thuê bao nhiêu xe mỗi loại để chi phí vận chuyển là thấp nhất. Biết rằng xe A chỉ chở tối đa 20 người và 0,6 tấn hàng. Xe B chở tối đa 10 người và 1,5 tấn hàng.
Câu 8:
Điểm nào sau đây thuộc miền nghiệm của bất phương trình bậc nhất hai ẩn x + 2y – 1 > 0 trên mặt phẳng tọa độ Oxy?
Điểm nào sau đây thuộc miền nghiệm của bất phương trình bậc nhất hai ẩn x + 2y – 1 > 0 trên mặt phẳng tọa độ Oxy?
Câu 9:
Cho hệ bất phương trình
Hai nghiệm của hệ trên là nghiệm nào trong các nghiệm sau?
Cho hệ bất phương trình
Hai nghiệm của hệ trên là nghiệm nào trong các nghiệm sau?
Câu 10:
Giá trị m để hệ bất phương trình trở thành hệ bất phương trình bậc nhất hai ẩn là:
Câu 11:
Điền vào chỗ trống từ còn thiếu: “Trong mặt phẳng tọa độ Oxy, tập hợp các điểm (x0; y0) sao cho ax0 + by0 + c ≥ 0 được gọi là ……của bất phương trình ax + by + c ≥ 0”.
Điền vào chỗ trống từ còn thiếu: “Trong mặt phẳng tọa độ Oxy, tập hợp các điểm (x0; y0) sao cho ax0 + by0 + c ≥ 0 được gọi là ……của bất phương trình ax + by + c ≥ 0”.
Câu 12:
Miền nghiệm của hệ bất phương trình là phần không tô màu đậm của hình vẽ nào trong các hình vẽ sau:
Miền nghiệm của hệ bất phương trình là phần không tô màu đậm của hình vẽ nào trong các hình vẽ sau:
Câu 13:
Bạn Minh cần phải làm quạt trong vòng không quá 5 giờ để bán. Quạt nan cần 30 phút để làm xong một cái, quạt giấy cần 1 giờ để làm xong một cái. Gọi x, y lần lượt là số quạt nan, quạt giấy mà Minh sẽ làm được. Hệ bất phương trình mô tả điều kiện của x và y là hệ bất phương trình nào sau đây?
Bạn Minh cần phải làm quạt trong vòng không quá 5 giờ để bán. Quạt nan cần 30 phút để làm xong một cái, quạt giấy cần 1 giờ để làm xong một cái. Gọi x, y lần lượt là số quạt nan, quạt giấy mà Minh sẽ làm được. Hệ bất phương trình mô tả điều kiện của x và y là hệ bất phương trình nào sau đây?
Câu 14:
Cho hệ bất phương trình bậc nhất hai ẩn:
Và F(x; y) = 3x + 2y. Tìm giá trị lớn nhất của F(x; y).
Cho hệ bất phương trình bậc nhất hai ẩn:
Và F(x; y) = 3x + 2y. Tìm giá trị lớn nhất của F(x; y).
Câu 15:
Một gia đình cần ít nhất 900 đơn vị protein và 400 đơn vị lipit trong thức ăn mỗi ngày. Mỗi ki ‒ lo ‒ gam thịt bò chứa 800 đơn vị protein và 200 đơn vị lipit. Mỗi ki ‒ lo ‒ gam thịt lợn chứa 600 đơn vị protein và 400 đơn vị lipit. Biết rằng gia đình này chỉ mua nhiều nhất 1,6 kg thịt bò và 1,1 kg thịt lợn. Giá tiền một kg thịt bò là 250 nghìn đồng, 1 kg thịt lợn là 110 nghìn đồng. Gọi x, y lần lượt là số kg thịt bò và thịt lợn mà gia đình đó cần mua để tổng số tiền họ phải trả là ít nhất mà vẫn đảm bảo lượng protein và lipit trong thức ăn. Giá trị x2 + y2 là:
Một gia đình cần ít nhất 900 đơn vị protein và 400 đơn vị lipit trong thức ăn mỗi ngày. Mỗi ki ‒ lo ‒ gam thịt bò chứa 800 đơn vị protein và 200 đơn vị lipit. Mỗi ki ‒ lo ‒ gam thịt lợn chứa 600 đơn vị protein và 400 đơn vị lipit. Biết rằng gia đình này chỉ mua nhiều nhất 1,6 kg thịt bò và 1,1 kg thịt lợn. Giá tiền một kg thịt bò là 250 nghìn đồng, 1 kg thịt lợn là 110 nghìn đồng. Gọi x, y lần lượt là số kg thịt bò và thịt lợn mà gia đình đó cần mua để tổng số tiền họ phải trả là ít nhất mà vẫn đảm bảo lượng protein và lipit trong thức ăn. Giá trị x2 + y2 là: