Một người đo chiều cao của một tòa nhà nhờ một cọc chôn xuống đất, cọc cao 3 m và đặt cách xa tòa nhà 27 m
271
20/12/2023
Bài 6 trang 76 Toán 8 Tập 2: Một người đo chiều cao của một tòa nhà nhờ một cọc chôn xuống đất, cọc cao 3 m và đặt cách xa tòa nhà 27 m. Sau khi người ấy lùi ra xa cách cọc 1,2 m thì nhìn thấy đầu cọc và đỉnh tòa nhà cùng nằm trên một đường thẳng. Hỏi tòa nhà cao bao nhiêu mét, biết rằng khoảng cách từ chân đến mắt người ấy là 1,5 m.
Trả lời
Gọi chiều cao của tòa nhà là h = A'C' và cọc tiêu AC = 3 m.
Khoảng cách từ chân đến mắt người đo là DE = 1,5 m.
Cọc xa cây một khoảng A'A = 27 m, và người cách cọc một khoảng AD = 1,2 m và gọi B là giao điểm của C'E và A'A.
Vì A'C' ⊥ A'B, AC ⊥ A'B, DE ⊥ A'B nên A'C' // AC // DE.
• ΔDEB ᔕ ΔACB (vì DE // AC)
Suy ra (các cặp cạnh tương ứng).
Mà AC = 3 m; DE = 1,5 m nên
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
Suy ra nên DB = 1,2
suy ra AB = 2,4
Do đó A'B = A'A + AD + DB = 27 + 1,2 + 1,2 = 29,4 (m)
• ΔACB ᔕ ΔA'C'B (vì AC // A'C')
Suy ra (các cặp cạnh tương ứng).
Do đó (m)
Vậy tòa nhà cao 24,5 m.
Xem thêm các bài giải SGK Toán lớp 8 Chân trời sáng tạo hay, chi tiết khác:
Bài tập cuối chương 7
Bài 1: Hai tam giác đồng dạng
Bài 2: Các trường hợp đồng dạng của hai tam giác
Bài 3: Các trường hợp đồng dạng của hai tam giác vuông
Bài 4: Hai hình đồng dạng
Bài tập cuối chương 8