Một hộp có 6 bi đỏ, 7 bi xanh, 8 bi vàng (các bi khác nhau). Lấy ngẫu nhiên 6 bi. Tính xác suất để lấy được ít nhất 3 bi đỏ.

2) Một hộp có 6 bi đỏ, 7 bi xanh, 8 bi vàng (các bi khác nhau). Lấy ngẫu nhiên 6 bi. Tính xác suất để lấy được ít nhất 3 bi đỏ.

Trả lời

2) Một hộp có 6 bi đỏ, 7 bi xanh, 8 bi vàng (các bi khác nhau). Lấy ngẫu nhiên 6 bi. Tính xác suất để lấy được ít nhất 3 bi đỏ.

Phương pháp:

Sử dụng biến cố đối.

Cách giải:

Lấy ngẫu nhiên 6 viên bi n(Ω)=C621=54264.

Gọi A là biến cố: “Lấy được ít nhất 3 viên bi đỏ” ¯A: “Lấy được ít hơn 3 viên bi đỏ”.

TH1: 0 bi đỏ + 6 bi khác màu đỏ (xanh hoặc vàng).

Số cách chọn là: C06.C615=5005 cách.

TH2: 1 bi đỏ + 5 bi khác màu đỏ (xanh hoặc vàng).

Số cách chọn là: C16.C515=18018 cách.

TH3: 2 bi đỏ + 4 bi khác màu đỏ (xanh hoặc vàng).

Số cách chọn là: C26.C415=20475 cách.

Áp dụng quy tắc cộng ta có n(¯A)=5005+18018+20475=43498.

Vậy P(A)=1P(¯A)=14349854264=7693876.

Câu hỏi cùng chủ đề

Xem tất cả