Phương pháp
1) Tính số phần tử không gian mẫu.
Tính số khả năng có lợi cho biến cố.
Sử dụng công thức tính xác suất \[P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}}\].
2) Sử dụng các quy tắc nhân xác suất, xác suất biến cố đối.
Cách giải
1) Một hộp chứa 3 quả cầu đen và 2 quả cầu trắng. Lấy ngẫu nhiên đồng thời 2 quả. Tính xác suất để lấy được hai quả cầu khác màu.
Phép thử: “Lấy ngẫu nhiên 2 quả cầu”.
\[ \Rightarrow n\left( \Omega \right) = C_5^2 = 10\].
Biến cố A: “Chọn được hai quả cầu khác màu”.
\[ \Rightarrow n\left( A \right) = C_3^1.C_2^1 = 3.2 = 6\].
Xác suất \[P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{6}{{10}} = \frac{3}{5}\].
2) Hai người tham gia một trò chơi ném bóng vào rổ, mỗi người ném vào rổ của mình 1 quả bóng. Biết rằng xác suất ném bóng trúng rổ của người thứ nhất, người thứ hai lần lượt là \[\frac{1}{5}\] và \[\frac{2}{7}\] và hai người ném một cách độc lập với nhau.
Gọi \[{B_1}\]: “Người 1 trúng rổ”, \[P\left( {{B_1}} \right) = \frac{1}{5}\].
\[{B_2}\]: “Người 2 trúng rổ”, \[P\left( {{B_2}} \right) = \frac{2}{7}\].
a) Tính xác suất để hai người cùng ném bóng trúng rổ.
Gọi biến cố B: Hai người trúng rổ.
Theo quy tắc nhân xác suất ta có: \[P\left( B \right) = P\left( {{B_1}} \right).P\left( {{B_2}} \right) = \frac{1}{5}.\frac{2}{7} = \frac{2}{{35}}\].
b) Tính xác suất để có ít nhất một người ném không trúng rổ.
Gọi biến cố C: Ít nhất một người không trúng rổ.
Biến cố đối \[\overline C \]: Cả hai người đều trúng rổ.
Dễ thấy đây cũng là biến cố B nên \[P\left( {\overline C } \right) = P\left( B \right) = \frac{2}{{35}}\].
Vậy \[P\left( C \right) = 1 - P\left( {\overline C } \right) = 1 - \frac{2}{{35}} = \frac{{33}}{{35}}\].