Mỗi tổ có 5 học sinh nam và 6 học sinh nữ. Giáo viên chọn ngẫu nhiên 3 học sinh để làm trực nhật. Tính xác suất để 3 học sinh được chọn có cả nam và nữ.
31
23/04/2024
Mỗi tổ có 5 học sinh nam và 6 học sinh nữ. Giáo viên chọn ngẫu nhiên 3 học sinh để làm trực nhật. Tính xác suất để 3 học sinh được chọn có cả nam và nữ.
Trả lời
Phương pháp:
Sử dụng biến cố đối.
Cách giải:
Giáo viên chọn ngẫu nhiên 3 học sinh để làm trực nhật \( \Rightarrow n\left( \Omega \right) = C_{11}^3 = 165\).
Gọi A là biến cố: “3 học sinh được chọn có cả nam và nữ”.
\( \Rightarrow \overline A \): “3 học sinh được chọn hoặc toàn là nam, hoặc toàn là nữ”.
Chọn 3 học sinh toàn là nam có \(C_5^3\) cách.
Chọn 3 học sinh toàn là nữ có \(C_6^3\) cách.
\( \Rightarrow n\left( {\overline A } \right) = C_5^3 + C_6^3 = 30\).
Vậy \(P\left( A \right) = 1 - P\left( {\overline A } \right) = 1 - \frac{{30}}{{165}} = \frac{9}{{11}}\).