Mặt bên của một chiếc va li (Hình 17a) có dạng hình thang cân và được vẽ lại
316
05/10/2023
Bài 7 trang 72 Toán 8 Tập 1: Mặt bên của một chiếc va li (Hình 17a) có dạng hình thang cân và được vẽ lại như Hình 17b. Biết hình thang đó có độ dài đường cao là 60 cm, cạnh bên là 61 cm và đáy lớn là 92 cm. Tính độ dài đáy nhỏ.
Trả lời
Áp dụng định lí Pythagore vào DADE vuông tại E, ta có:
AD2 = AE2 + DE2
Suy ra DE2 = AD2 – AE2 = 612 – 602 = 3 721 – 3 600 = 121 = 112
Do đó DE = 11 cm.
Kẻ BF ⊥ CD, khi đó BF là đường cao của hình thang cân ABCD nên BF = 60 cm.
Xét DADE và DBCF có:
;
AD = BC (do ABCD là hình thang cân);
(do ABCD là hình thang cân).
Do đó DADE = DBCF (cạnh huyền – góc nhọn)
Suy ra DE = CF = 11 cm (hai cạnh tương ứng).
Mà DE + EF + CF = DC
Nên EF = DC – DE – CF = 92 – 11 – 11 = 70 cm.
Tương tự Vận dụng 4, trang 71, Sách giáo khoa Toán 8, tập một, ta dễ dàng chứng minh được AB = EF = 70 cm.
Vậy độ dài đáy nhỏ của hình thang cân là 70 cm.
Xem thêm lời giải bài tập SGK Toán lớp 8 Chân trời sáng tạo hay, chi tiết khác:
Bài 1: Định lí Pythagore
Bài 2: Tứ giác
Bài 3: Hình thang – Hình thang cân
Bài 4: Hình bình hành – Hình thoi
Bài 5: Hình chữ nhật – Hình vuông
Bài tập cuối chương 3