Cho tam giác ABC vuông tại A (AB < AC). Tia phân giác của góc B cắt AC tại D
17.3k
05/10/2023
Bài 4 trang 72 Toán 8 Tập 1: Cho tam giác ABC vuông tại A (AB < AC). Tia phân giác của góc B cắt AC tại D. Trên BC lấy điểm E sao cho BE = BA.
a) Chứng minh rằng DABD = DEBD.
b) Kẻ đường cao AH của tam giác ABC. Chứng minh rằng tứ giác ADEH là hình thang vuông.
c) Gọi I là giao điểm của AH với BD, đường thẳng EI cắt AB tại F. Chứng minh rằng tứ giác ACEF là hình thang vuông.
Trả lời
a) Xét DABD và DEBD có:
BA = BE (giả thiết);
(do BD là tia phân giác của );
BD là cạnh chung,
Do đó DABD = DEBD (c.g.c).
b) Do DABD = DEBD (câu a) nên (hai góc tương ứng).
Do đó DE ⊥ BC
Mà AH ⊥ BC (giả thiết) nên DE // AH.
Tứ giác ADEH có DE // AH nên là hình thang
Lại có nên ADEH là hình thang vuông.
c) Do DABD = DEBD (câu a) nên AD = ED (hai cạnh tương ứng)
Do đó D nằm trên đường trung trực của AE.
Lại có BA = BE (giả thiết) nên B nằm trên đường trung trực của AE.
Suy ra BD là đường trung trực của đoạn thẳng AE nên BD ⊥ AE, hay BI ⊥ AE.
Xét DABE có AI ⊥ BE, BI ⊥ AE nên I là trực tâm của tam giác
Do đó EI ⊥ AB hay EF ⊥ AB.
Mà CA ⊥ AB (do DABC vuông tại A)
Suy ra EF // CA.
Tứ giác ACEFF có EF // CA nên là hình thang.
Lại có nên ACEFF là hình thang vuông.
Xem thêm lời giải bài tập SGK Toán lớp 8 Chân trời sáng tạo hay, chi tiết khác:
Bài 1: Định lí Pythagore
Bài 2: Tứ giác
Bài 3: Hình thang – Hình thang cân
Bài 4: Hình bình hành – Hình thoi
Bài 5: Hình chữ nhật – Hình vuông
Bài tập cuối chương 3