Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = cos 2x trên đoạn [ - pi /3; pi /6]. Tính giá trị biểu thức T = M - 2m.    A. T = 2   B. T = 1 + căn bậc hai của 3    

Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số\(y = \cos 2x\)trên đoạn\(\left[ { - \frac{\pi }{3};\frac{\pi }{6}} \right].\)Tính giá trị biểu thức\(T = M - 2m.\)
A. T = 2
B. \(T = 1 + \sqrt 3 \)
C. \(T = \frac{3}{2}\)
D. \(T = \frac{5}{2}\)

Trả lời

Đáp án A

Phương pháp:

Xét trên đường tròn lượng giác.

Media VietJack

Cách giải:

Ta có\[x \in \left[ { - \frac{\pi }{3};\frac{\pi }{6}} \right] \Rightarrow 2x \in \left[ { - \frac{{2\pi }}{3};\frac{\pi }{3}} \right].\]

Biểu diễn trên đường tròn lượng giác:

Dựa vào đường tròn lượng giác ta thấy với\[2x \in \left[ { - \frac{{2\pi }}{3};\frac{\pi }{3}} \right] \Rightarrow \cos 2x \in \left[ { - \frac{1}{2};1} \right].\]

Vậy\[M = 1;m = - \frac{1}{2} \Rightarrow T = M - 2m = 1 - 2.\left( { - \frac{1}{2}} \right) = 2.\]

Chú ý: Cần biểu diễn trên đường tròn lượng giác, nhiều học sinh nhầm lẫn\[2x \in \left[ { - \frac{{2\pi }}{3};\frac{\pi }{3}} \right] \Rightarrow \cos 2x \in \left[ { - \frac{1}{2};\frac{1}{2}} \right].\]

Câu hỏi cùng chủ đề

Xem tất cả