Gọi I là trung điểm của cạnh CD, G là trọng tâm của tam giác SAB. Tìm giao điểm K của IG và ( OMN). Tính tỉ số IK/IG

3) Gọi I là trung điểm của cạnh CD, G là trọng tâm của tam giác SAB. Tìm giao điểm K của IG và \[\left( {OMN} \right)\]. Tính tỉ số \[\frac{{IK}}{{IG}}\].

Trả lời

Phương pháp

c) Phương pháp xác định giao điểm của đường thẳng a với mặt phẳng \[\left( \alpha \right)\].

- Tìm mặt phẳng phụ \[\left( P \right)\] chứa a.

- Tìm giao tuyến \[d = \left( P \right) \cap \left( \alpha \right)\]

- Tìm giao điểm của d với a.

Sử dụng định lý Ta-lét để tính tỉ số \[\frac{{IK}}{{IG}}\].

Cách giải

3) Gọi I là trung điểm của cạnh CD, G là trọng tâm của tam giác SAB. Tìm giao điểm K của IG và \[\left( {OMN} \right)\]. Tính tỉ số \[\frac{{IK}}{{IG}}\].

*) Tìm giao điểm của IG với \[\left( {OMN} \right)\].

+ Gọi P là trung điểm của AB. Dễ thấy \[IG \subset \left( {SIP} \right)\].

+ Ta tìm giao tuyến của \[\left( {SIP} \right)\] với \[\left( {OMN} \right)\].

I, P là trung điểm của CD, AB nên \[O \in IP \subset \left( {SIP} \right)\].

\[O \in \left( {OMN} \right) \Rightarrow O \in \left( {SIP} \right) \cap \left( {OMN} \right)\;\;\left( 1 \right)\].

Trong \[\left( {SCD} \right)\], gọi \[H = SI \cap MN \Rightarrow \left\{ \begin{array}{l}H \in SI \subset \left( {SIP} \right)\\H \in MN \subset \left( {OMN} \right)\end{array} \right. \Rightarrow H \in \left( {SIP} \right) \cap \left( {OMN} \right)\;\;\left( 2 \right)\].

Từ (1) và (2) suy ra \[OH = \left( {SIP} \right) \cap \left( {OMN} \right)\].

+ Trong \[\left( {SIP} \right)\], gọi \[K = OH \cap IG\].

Khi đó \[\left\{ \begin{array}{l}K \in OH \subset \left( {OMN} \right)\\K \in IG\end{array} \right. \Rightarrow K = IG \cap \left( {OMN} \right)\].

*) Tính \[\frac{{IK}}{{IG}}\].

Trong \[\Delta SCI\]M là trung điểm SC\[MH//CI\] nên H là trung điểm của SI.

Trong \[\Delta SIP\]\[\frac{{SH}}{{SI}} = \frac{1}{2}\]\[\frac{{PO}}{{PI}} = \frac{1}{2}\] nên \[\frac{{SH}}{{SI}} = \frac{{PO}}{{PI}} = \frac{1}{2}\].

Theo định lý Ta – let ta có \[OH//SP\] hay \[OK//PG\].

Trong \[\Delta IPG\]O là trung điểm IP\[OK//PG\] nên K là trung điểm IO.

Vậy \[\frac{{IK}}{{IG}} = \frac{1}{2}\].

Câu hỏi cùng chủ đề

Xem tất cả