Gọi a, b, c lần lượt là hệ số của các số hạng chứa x^2, số hạng chứa x^4, số hạng chứa x^6 trong khai triển biểu thức x/2 - 4m^12 thành đa thức. Tìm m để a = bc

a) Gọi a, b, c lần lượt là hệ số của các số hạng chứa \[{x^2}\], số hạng chứa \[{x^4}\], số hạng chứa \[{x^6}\] trong khai triển biểu thức \[{\left( {\frac{x}{2} - 4m} \right)^{12}}\] thành đa thức. Tìm m để \[a = bc\].

Trả lời

Phương pháp:

Áp dụng công thức khai triển nhị thức Newton: \[{\left( {x + y} \right)^n} = \sum\limits_{i = 0}^n {C_n^i{x^i}.{y^{n - i}}} \]

Cách giải:

Ta có: \[{\left( {\frac{x}{2} - 4m} \right)^{12}} = \sum\limits_{i = 0}^{12} {C_{12}^i{{\left( {\frac{1}{2}x} \right)}^i}.{{\left( { - 4m} \right)}^{12 - i}}} = \sum\limits_{i = 0}^{12} {C_{12}^i{{\left( { - 1} \right)}^{12 - i}}{2^{24 - 3i}}{m^{12 - i}}{x^i}} \]

Hệ số của các số hạng chứa \[{x^2}\], số hạng chứa \[{x^4}\], số hạng chứa \[{x^6}\] lần lượt là:

\[a = C_{12}^2{2^{18}}{m^{10}},\,\,b = C_{12}^4{2^{12}}{m^8},\,c = C_{12}^6{2^6}{m^4}\]

Theo đề bài:

\[a = bc \Leftrightarrow C_{12}^2{2^{18}}{m^{10}} = C_{12}^4{2^{12}}{m^8}.C_{12}^6{2^6}{m^4} \Leftrightarrow C_{12}^2{m^{10}} = C_{12}^4C_{12}^6{m^{12}} \Leftrightarrow {m^{10}}\left( {66 - 495.924{m^2}} \right) = 0\]

\[ \Leftrightarrow \left[ \begin{array}{l}m = 0\\{m^2} = \frac{1}{{6930}}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m = 0\\m = \pm \sqrt {\frac{1}{{6930}}} \end{array} \right.\]

Câu hỏi cùng chủ đề

Xem tất cả