Gieo một con xúc xắc cân đối, đồng chất hai lần. Gọi A là biến cố “tổng số chấm xuất hiện trên mặt của xúc sắc sau hai lần gieo bằng 8”. Khi đó xác suất của biến cố A là bao nhiêu?          

Gieo một con xúc xắc cân đối, đồng chất hai lần. Gọi A là biến cố “tổng số chấm xuất hiện trên mặt của xúc sắc sau hai lần gieo bằng 8”. Khi đó xác suất của biến cố A là bao nhiêu?
A. \(\frac{5}{{36}}\).
B. \(\frac{7}{{36}}\).
C. \(\frac{4}{{36}}\).
D. \(\frac{6}{{36}}\).

Trả lời

Đáp án A

Phương pháp:

Sử dụng quy tắc nhân và cộng.

Cách giải:

Ta có \(8 = 2 + 6 = 3 + 5 = 4 + 4\)

Xác suất 1 lần tung là \(\frac{1}{6}\)

Nên gieo xúc sắc 2 lần thì sẽ có xác suất là \({\left( {\frac{1}{6}} \right)^2} = \frac{1}{{36}}\)

Với lần tung \(\left\{ {2;6} \right\}\); \(\left\{ {3;4} \right\}\) sẽ có 2 cách sắp xếp xuất hiện.

Do đó xác suất để thỏa mãn bài toán là \(\frac{1}{{36}}.2 + \frac{1}{{36}}.2 + \frac{1}{{36}} = \frac{5}{{36}}\)

Câu hỏi cùng chủ đề

Xem tất cả