Giải các phương trình sau: a) sin 2x = 1/2
Giải các phương trình sau:
a) \[\sin 2x = \frac{1}{2}\]
Giải các phương trình sau:
a) \[\sin 2x = \frac{1}{2}\]
Phương pháp:
Giải phương trình lượng giác cơ bản \[\sin x = \sin \alpha \Leftrightarrow \left[ \begin{array}{l}x = \alpha + k2\pi \\x = \pi - \alpha + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\]
Cách giải:
\[\sin 2x = \frac{1}{2} \Leftrightarrow \left[ \begin{array}{l}2x = \frac{\pi }{6} + k2\pi \\2x = \frac{{5\pi }}{6} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{{12}} + k\pi \\x = \frac{{5\pi }}{{12}} + k\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\]