Giải các phương trình sau: a) 4 – log(3 – x) = 3
Luyện tập 2 trang 21 Toán 11 Tập 2: Giải các phương trình sau:
a) 4 – log(3 – x) = 3;
b) log2(x + 2) + log2(x – 1) = 1.
Luyện tập 2 trang 21 Toán 11 Tập 2: Giải các phương trình sau:
a) 4 – log(3 – x) = 3;
b) log2(x + 2) + log2(x – 1) = 1.
a) 4 – log(3 – x) = 3
Điều kiện: 3 – x > 0 ⇔ x < 3.
Phương trình đã cho trở thành log(3 – x) = 1 ⇔ 3 – x = 101 ⇔ x = – 7 (t/m).
Vậy phương trình đã cho có nghiệm duy nhất x = – 7.
b) log2(x + 2) + log2(x – 1) = 1
Áp dụng tính chất của lôgarit, phương trình đã cho trở thành
log2 [(x + 2)(x – 1)] = 1
⇔ (x + 2)(x – 1) = 21
⇔ x2 + x – 2 = 2
⇔ x2 + x – 4 = 0
Kết hợp với điều kiện, vậy phương trình đã cho có nghiệm duy nhất .
Xem thêm các bài giải SGK Toán lớp 11 Kết nối tri thức hay, chi tiết khác: