Giải các phương trình sau: a) log(x + 1) = 2
Bài 6.21 trang 24 Toán 11 Tập 2: Giải các phương trình sau:
a) log(x + 1) = 2;
b) 2log4x + log2(x – 3) = 2;
c) lnx + ln(x – 1) = ln4x;
d) log3(x2 – 3x + 2) = log3(2x – 4).
Bài 6.21 trang 24 Toán 11 Tập 2: Giải các phương trình sau:
a) log(x + 1) = 2;
b) 2log4x + log2(x – 3) = 2;
c) lnx + ln(x – 1) = ln4x;
d) log3(x2 – 3x + 2) = log3(2x – 4).
a) log(x + 1) = 2
Điều kiện: x + 1 > 0 ⇔ x > – 1.
Phương trình đã cho tương đương với x + 1 = 102 ⇔ x = 100 – 1 ⇔ x = 99 (t/m).
Vậy phương trình đã cho có nghiệm duy nhất x = 99.
b) 2log4x + log2(x – 3) = 2
Ta có 2log4x + log2(x – 3) = 2
⇔ log2x + log2(x – 3) = 2
⇔ log2x(x – 3) = 2
⇔ x(x – 3) = 22
⇔ x2 – 3x – 4 = 0
⇔ x = – 1 hoặc x = 4.
Kết hợp với điều kiện, vậy phương trình đã cho có nghiệm duy nhất x = 4.
c) lnx + ln(x – 1) = ln4x
Ta có: lnx + ln(x – 1) = ln4x
⇔ lnx(x – 1) = ln4x
⇔ x(x – 1) = 4x
⇔ x2 – 5x = 0
⇔ x(x – 5) = 0
⇔ x = 0 hoặc x = 5.
Kết hợp với điều kiện, vậy phương trình đã cho có nghiệm duy nhất x = 5.
d) log3(x2 – 3x + 2) = log3(2x – 4)
Phương trình đã cho tương đương với
x2 – 3x + 2 = 2x – 4
⇔ x2 – 5x + 6 = 0
⇔ x = 2 hoặc x = 3.
Kết hợp với điều kiện, vậy phương trình đã cho có nghiệm duy nhất x = 3.
Xem thêm các bài giải SGK Toán lớp 11 Kết nối tri thức hay, chi tiết khác: