Câu hỏi:
19/01/2024 54
Giá trị m để đồ thị hàm số y = 2x – m + 6 đi qua điểm H(2; –5) là:
A. m = –6;
B. m = 15;
C. m = 8;
D. m = 1.
Trả lời:
Hướng dẫn giải
Đáp án đúng là: B
Đồ thị hàm số y = 2x – m + 6 đi qua điểm H(2; –5).
Ta suy ra –5 = 2.2 – m + 6.
Tức là, m = 15.
Vậy ta chọn phương án B.
Hướng dẫn giải
Đáp án đúng là: B
Đồ thị hàm số y = 2x – m + 6 đi qua điểm H(2; –5).
Ta suy ra –5 = 2.2 – m + 6.
Tức là, m = 15.
Vậy ta chọn phương án B.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số y = ax2 + bx + c có đồ thị như hình vẽ:
Mệnh đề nào dưới đây đúng?
Cho hàm số y = ax2 + bx + c có đồ thị như hình vẽ:
Mệnh đề nào dưới đây đúng?
Câu 3:
Cho hàm số y = f(x) xác định trên đọa [–3; 3] và có đồ thị được biểu diễn như hình bên:
Khẳng định nào sau đây đúng?
Câu 4:
Cho hàm số y = 2x2 – 4x + 3 có đồ thị là parabol (P). Mệnh đề nào sau đây sai?
Câu 5:
Xét tính đồng biến, nghịch biến của hàm số \(y = \sqrt[3]{x} + 3\).
Câu 6:
Cho hàm số \(f\left( x \right) = \sqrt {2x - 7} \). Khẳng định nào sau đây đúng?
Câu 9:
Cho hàm số \[y = h\left( x \right) = \left\{ \begin{array}{l} - 2\left( {{x^2} + 1} \right),\,\,\,khi\,\,x \le 1\\4\sqrt {x - 1} ,\,\,\,\,\,\,\,\,\,\,khi\,\,x > 1\end{array} \right.\]. Khi đó \(h\left( {\frac{{\sqrt 2 }}{2}} \right)\) bằng:
Câu 10:
Xác định các hệ số m, n để parabol (P): y = mx2 + 4x – n (m ≠ 0) có đỉnh S(–1; –5).
Câu 12:
Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l} - 2x + 1,\,\,\,\,khi\,\,x \le - 3\\\frac{{x + 7}}{2},\,\,\,\,\,\,\,\,khi\,\,x > - 3\end{array} \right.\). Nếu f(x0) = 5 thì x0 bằng: