Đội tuyển học sinh giỏi môn toán của trường THPT Kim Liên gồm có: 5 học sinh khối 10; 5 học sinh khối 11; 5 học sinh khối 12. Chọn ngẫu nhiên 10 học sinh từ đội tuyển đi tham dự kì thi AMC. C

Đội tuyển học sinh giỏi môn toán của trường THPT Kim Liên gồm có: 5 học sinh khối 10; 5 học sinh khối 11; 5 học sinh khối 12. Chọn ngẫu nhiên 10 học sinh từ đội tuyển đi tham dự kì thi AMC. Có bao nhiêu cách chọn được học sinh của cả ba khối và có nhiều nhất hai học sinh khối 10?
A. 50.
B. 500.
C. 501.
D. 502.

Trả lời

Đáp án B

Phương pháp

Sử dụng kiến thức về tổ hợp và hai quy tắc đếm cơ bản.

Cách giải

TH1: Đội tuyển gồm 1 học sinh khối 10 và 9 học sinh của 2 khối 11 và khối 12.

Số cách chọn là: \[C_5^1.C_{10}^9 = 50\] cách.

TH2: Đội tuyển gồm 2 học sinh khối 10 và 8 học sinh của 2 khối 11 và khối 12.

Số cách chọn là: \[C_5^2.C_{10}^8 = 450\] cách.

Vậy có \[450 + 50 = 500\] cách chọn thỏa mãn yêu cầu đề bài.

Câu hỏi cùng chủ đề

Xem tất cả