Có tất cả bao nhiêu giá trị nguyên của tham số m nằm trong khoảng (-2023;2023) để hàm số y = 2023/(mlog3^2(x) - 4log3(x) + m + 3) xác định
10
01/12/2024
Có tất cả bao nhiêu giá trị nguyên của tham số m nằm trong khoảng
(-2023;2023) để hàm số xác định trên khoảng ?
A. 4040
B. 4044
C. 4039
D. 4046
Trả lời
Đáp án đúng là: C
Điều kiện: x > 0 .
Hàm số đã cho xác định trên thì
Để hàm số xác định trên khoảng thì phương trình vô nghiệm trên khoảng .
Xét hàm số với
Khi đó ; .
Ta có .
Bảng biến thiên
Dựa vào bảng biến thiên suy ra .
Kết hợp điều kiện .
Vì suy ra có 4039 giá trị m thỏa mãn.