Chứng minh Tam giác IMN cân tại I
Cho tam giác OPQ cân tại O có I là trung điểm của PQ. Kẻ IM // QO (M ∈ OP), IN // PO (N ∈ QO). Chứng minh:
Tam giác IMN cân tại I;
Cho tam giác OPQ cân tại O có I là trung điểm của PQ. Kẻ IM // QO (M ∈ OP), IN // PO (N ∈ QO). Chứng minh:
Tam giác IMN cân tại I;
Xét ∆OPQ, ta có IP = IQ và IM // QO nên MO = MP.
Xét ∆OPQ, ta có IP = IQ và MO = MP nên IM là đường trung bình của ∆OPQ.
Suy ra IM = \[\frac{1}{2}\]QO.
Tương tự, IN là đường trung bình của ∆OPQ, suy ra IN = \[\frac{1}{2}\]PO.
Mà ∆OPQ cân tại O nên QO = PO. Suy ra IM = IN.
Tam giác IMN có IM = IN suy ra tam giác IMN cân tại I.