Chứng minh các đẳng thức sau: (a+b)^2 - (a-b)^2=4ab

Bài 11 trang 14 SBT Toán 8 Tập 1Chứng minh các đẳng thức sau:

a) (a+b)2(ab)2=4ab;

b) a3+b3=(a+b)[(ab)2+ab];

c) 2(ab)(a+b)+(a+b)2+(ab)2=4a2;

d) (a+b+c)2=a2+b2+c2+2ab+2bc+2ac.

Trả lời

a) (a+b)2(ab)2=a2+2ab+b2a2+2abb2

=(a2a2)+(2ab+2ab)+(b2b2=)4ab (đpcm)

b) 

a3+b3=(a+b)(a2ab+b2)=(a+b)(a22ab+b2+ab)=(a+b)[(ab)2+ab]

c) 

2(ab)(a+b)+(a+b)2+(ab)2=2(a2b2)+a2+2ab+b2+a22ab+b2

=(2a2+a2+a2)+(b2+b22b2)+(2ab2ab)=4a2

d)

(a+b+c)2=[(a+b)+c]2=(a+b)2+2(a+b)c+c2

=a2+b2+c2+2ab+2bc+2ac

Xem thêm các bài giải sách bài tập Toán 8 Chân trời sáng tạo hay, chi tiết khác:

Bài 1: Đơn thức và đa thức nhiều biến

Bài 2: Các phép toán với đa thức nhiều biến

Bài 3: Hằng đẳng thức đáng nhớ

Bài 4: Phân tích đa thức thành nhân tử

Bài 5: Phân thức đại số

Bài 6: Cộng, trừ phân thức

Câu hỏi cùng chủ đề

Xem tất cả