Chọn ngẫu nhiên một số tự nhiên có ba chữ số. Tính xác suất để số được chọn không vượt quá 600, đồng thời nó chia hết cho 5.   A. 500/900   B. 100/900    C. 101/900  D. 501/900

Chọn ngẫu nhiên một số tự nhiên có ba chữ số. Tính xác suất để số được chọn không vượt quá 600, đồng thời nó chia hết cho 5.
A. \[\frac{{500}}{{900}}\]
B. \[\frac{{100}}{{900}}\]
C. \[\frac{{101}}{{900}}\]
D. \[\frac{{501}}{{900}}\]

Trả lời

Đáp án C

Phương pháp:

Số chia hết cho 5 là số có tận cùng là 0 hoặc 5.

Cách giải:

Số các số tự nhiên có 3 chữ số là \[9.10.10 = 900\] số \[ \Rightarrow n\left( \Omega \right) = 900.\]

Gọi A là biến cố: “số được chọn không vượt quá 600, đồng thời nó chia hết cho 5”.

\[ \Rightarrow A = \left\{ {100 \le 5k \le 600|k \in \mathbb{N}} \right\}.\] Do \[100 \le 5k \le 600 \Leftrightarrow 20 \le k \le 120,\] suy ra có \[\frac{{120 - 20}}{1} + 1 = 101\] số k thỏa mãn \[ \Rightarrow n\left( A \right) = 101.\]

Vậy \[P\left( A \right) = \frac{{101}}{{900}}.\]

Câu hỏi cùng chủ đề

Xem tất cả