Cho tứ giác ABCD. Gọi M, N theo thứ tự là trung điểm các cạnh AB, CD và gọi I là trung điểm của MN

Bài 4.16 trang 54 SBT Toán 10 Tập 1:

Cho tứ giác ABCD. Gọi M, N theo thứ tự là trung điểm các cạnh AB, CD và gọi I là trung điểm của MN. Chứng minh rằng với điểm O bất kì đều có

OA+OB+OC+OD=4OI. 

Trả lời

Sách bài tập Toán 10 Bài 9: Tích của một vectơ với một số - Kết nối tri thức (ảnh 1)

Với điểm O bất kì ta có:

+) OA+OB=2OM (do M là trung điểm của AB)

+) OC+OD=2ON (do N là trung điểm của CD)

+) OM+ON=2OI (do I là trung điểm của MN)

 OA+OB+OC+OD=2OM+2ON

=2OM+ON=2.2OI=4OI 

Vậy với điểm O bất kì đều có: OA+OB+OC+OD=4OI. 

Xem thêm các bài giải SBT Toán lớp 10 Kết nối tri thức hay, chi tiết khác:

Bài 7: Các khái niệm mở đầu

Bài 8: Tổng và hiệu của hai vectơ

Bài 9: Tích của một vectơ với một số

Bài 10: Vectơ trong mặt phẳng tọa độ

Bài 11: Tích vô hướng của hai vectơ

Bài tập cuối chương 4

Câu hỏi cùng chủ đề

Xem tất cả