Cho tam giác ABC. a) Tìm điểm M sao cho MA + MB + 2.MC = 0; b) Xác định điểm N

Bài 4.19 trang 54 SBT Toán 10 Tập 1:

Cho tam giác ABC.

a) Tìm điểm M sao cho MA+MB+2MC=0.

b) Xác định điểm N thoả mãn  4NA2NB+NC=0.

Trả lời

a)

Sách bài tập Toán 10 Bài 9: Tích của một vectơ với một số - Kết nối tri thức (ảnh 1)

Gọi I là trung điểm của AB.

Khi đó: MA+MB=2MI 

MA+MB+2MC=2MI+2MC=2MI+MC

Gọi K là trung điểm của IC, khi đó: MI+MC=2MK

MA+MB+2MC=2.2MK=4MK.

Mà MA+MB+2MC=0.

Do đó 4MK=0MK=0

Suy ra M ≡ K.

Vậy M là trung điểm của IC (với I là trung điểm của AB).

b)

Sách bài tập Toán 10 Bài 9: Tích của một vectơ với một số - Kết nối tri thức (ảnh 1)

Ta có: 

Sách bài tập Toán 10 Bài 9: Tích của một vectơ với một số - Kết nối tri thức (ảnh 1)

Gọi H là trung điểm của AC, khi đó 

Sách bài tập Toán 10 Bài 9: Tích của một vectơ với một số - Kết nối tri thức (ảnh 1)

Giả sử P là điểm thỏa mãn PA+2.PH=0

Khi đó 

Sách bài tập Toán 10 Bài 9: Tích của một vectơ với một số - Kết nối tri thức (ảnh 1)

Mà 4NA2NB+NC=0.

Nên 

Sách bài tập Toán 10 Bài 9: Tích của một vectơ với một số - Kết nối tri thức (ảnh 1)

Gọi Q là điểm nằm trên cạnh AB sao cho AQ=23AB

NP=AQ

Do đó tứ giác AQPN là hình bình hành

Vậy điểm N cần tìm là đỉnh của hình bình hành AQPN (với Q thỏa mãn AQ=23AB và P thỏa mãn PA+2.PH=0, H là trung điểm của AC).

Xem thêm các bài giải SBT Toán lớp 10 Kết nối tri thức hay, chi tiết khác:

Bài 7: Các khái niệm mở đầu

Bài 8: Tổng và hiệu của hai vectơ

Bài 9: Tích của một vectơ với một số

Bài 10: Vectơ trong mặt phẳng tọa độ

Bài 11: Tích vô hướng của hai vectơ

Bài tập cuối chương 4

Câu hỏi cùng chủ đề

Xem tất cả