Cho lục giác ABCDEF. Gọi M, N, P, Q, R, S theo thứ tự là trung điểm của các cạnh AB, BC, CD, DE, EF, FA

Bài 4.17 trang 54 SBT Toán 10 Tập 1:

Cho lục giác ABCDEF. Gọi M, N, P, Q, R, S theo thứ tự là trung điểm của các cạnh AB, BC, CD, DE, EF, FA. Chứng minh rằng hai tam giác MPR và NQS có cùng trọng tâm.

Trả lời

Sách bài tập Toán 10 Bài 9: Tích của một vectơ với một số - Kết nối tri thức (ảnh 1)

+) Vì M, N lần lượt là trung điểm của AB, BC

Nên MN là đường trung bình của tam giác ABC.

 MN // AC và MN=12AC (tính chất đường trung bình)

Do đó MN=12AC                                                (1)

Chứng minh tương tự ta cũng có: PQ=12CE         (2)

Và RS=12EA                                                       (3)

Từ (1), (2) và (3) ta có:

MN+PQ+RS=12AC+12CE+12EA

=12AC+CE+EA 

=12AE+EA (quy tắc ba điểm)

=12AA                 (quy tắc ba điểm)

=12.0=0

Do đó MN+PQ+RS=0

+) Giả sử G và G' lần lượt là trọng tâm của tam giác MPR và tam giác NQS.

Khi đó ta có: MG+PG+RG=0 và NG'+QG'+SG'=0 hay G'N+G'Q+G'S=0

Mặt khác: theo quy tắc ba điểm ta có:

Sách bài tập Toán 10 Bài 9: Tích của một vectơ với một số - Kết nối tri thức (ảnh 1)

MN+PQ+RS=MG+PG+RG+3.GG'+G'N+G'Q+G'S

=MG+PG+RG+3.GG'+G'N+G'Q+G'S

=0+3.GG'+0

=3.GG'

+) Lại có MN+PQ+RS=0 (chứng minh trên)

Nên 3GG'=0

GG'=0

Suy ra G và G' trùng nhau.

Vậy hai tam giác MPR và NQS có cùng trọng tâm.

Xem thêm các bài giải SBT Toán lớp 10 Kết nối tri thức hay, chi tiết khác:

Bài 7: Các khái niệm mở đầu

Bài 8: Tổng và hiệu của hai vectơ

Bài 9: Tích của một vectơ với một số

Bài 10: Vectơ trong mặt phẳng tọa độ

Bài 11: Tích vô hướng của hai vectơ

Bài tập cuối chương 4

Câu hỏi cùng chủ đề

Xem tất cả