Cho lục giác ABCDEF. Gọi M, N, P, Q, R, S theo thứ tự là trung điểm của các cạnh AB, BC, CD, DE, EF, FA
80
11/01/2024
Bài 4.17 trang 54 SBT Toán 10 Tập 1:
Cho lục giác ABCDEF. Gọi M, N, P, Q, R, S theo thứ tự là trung điểm của các cạnh AB, BC, CD, DE, EF, FA. Chứng minh rằng hai tam giác MPR và NQS có cùng trọng tâm.
Trả lời
+) Vì M, N lần lượt là trung điểm của AB, BC
Nên MN là đường trung bình của tam giác ABC.
MN // AC và (tính chất đường trung bình)
Do đó (1)
Chứng minh tương tự ta cũng có: (2)
Và (3)
Từ (1), (2) và (3) ta có:
(quy tắc ba điểm)
(quy tắc ba điểm)
Do đó
+) Giả sử G và G' lần lượt là trọng tâm của tam giác MPR và tam giác NQS.
Khi đó ta có: và hay
Mặt khác: theo quy tắc ba điểm ta có:
+) Lại có (chứng minh trên)
Nên
Suy ra G và G' trùng nhau.
Vậy hai tam giác MPR và NQS có cùng trọng tâm.
Xem thêm các bài giải SBT Toán lớp 10 Kết nối tri thức hay, chi tiết khác:
Bài 7: Các khái niệm mở đầu
Bài 8: Tổng và hiệu của hai vectơ
Bài 9: Tích của một vectơ với một số
Bài 10: Vectơ trong mặt phẳng tọa độ
Bài 11: Tích vô hướng của hai vectơ
Bài tập cuối chương 4