Cho tam giác OAB vuông cân, với OA = OB = a. Hãy xác định độ dài của các vectơ sau 

Bài 4.14 trang 54 SBT Toán 10 Tập 1:

Cho tam giác OAB vuông cân, với OA = OB = a. Hãy xác định độ dài của các vectơ sau OA+OB,OAOB,OAOB,2OA3OB.

 

Trả lời

Sách bài tập Toán 10 Bài 9: Tích của một vectơ với một số - Kết nối tri thức (ảnh 1)

Gọi C là điểm thoả mãn OACB là hình bình hành

Mà ∆OAB vuông cân có OA = OB nên OACB là hình vuông

 OC = AB

Mà AB2 = OA2 + OB(định lí Pythagoras)

 AB2 = a2 + a2 = 2a2

OC=AB=a2 

+) Có: OA+OB=OC (quy tắc hình bình hành)

OA+OB=OC=OC=a2 

+) Có:

OAOB=OA+BO=BO+OA=BA 

OA+OB=OC=OC=a2

+) Lấy điểm D sao cho OD=2OB nên hai vectơ ODOB cùng hướng và OD = 2OB.

Có: OA+2OB=OA+OD

Vẽ hình chữ nhật OAED, khi đó OA+OD=OE

OA+2OB=OE=OE 

Mà OE2 = OD2 + DE2 (định lí Pythagoras)

 OE2 = (2OB)2 + OA2

 OE2 = (2a)2 + a2 = 5a2

OE=a5 

Do đó OA+2OB=a5

+) Lấy điểm G sao cho OG=2OA,OH=3OB 

Khi đó: hai vectơ OGOA cùng hướng và OG = 2OA;

Và hai vectơ OHOB cùng hướng và OH = 3OB.

Có: 2OA3OB=OGOH

=OG+HO =HO+OG 

=HG

2OA3OB=HG=HG 

Mà HG2 = OG2 + OH2 (định lí Pythagoras)

 HG2 = (2OA)2 + (3OB)2

 HG2 = (2a)2 + (3a)2

 HG2 = 13a2

HG=a13 

Do đó 2OA3OB=a13.

Vậy OA+OB=a2; OAOB=a2; OA+2OB=a5 và  2OA3OB=a13.

Xem thêm các bài giải SBT Toán lớp 10 Kết nối tri thức hay, chi tiết khác:

Bài 7: Các khái niệm mở đầu

Bài 8: Tổng và hiệu của hai vectơ

Bài 9: Tích của một vectơ với một số

Bài 10: Vectơ trong mặt phẳng tọa độ

Bài 11: Tích vô hướng của hai vectơ

Bài tập cuối chương 4

Câu hỏi cùng chủ đề

Xem tất cả