Câu hỏi:

19/01/2024 63

Cho tam giác đều ABC cạnh bằng a, G là trọng tâm tam giác ABC. Tập hợp các điểm M thỏa mãn MA+MB=MA+MC là


A. đường trung trực đoạn thẳng BC;


Đáp án chính xác

B. đường tròn đường kính BC;

C. đường tròn tâm G, bán kính a;

D. đường trung trực đoạn thẳng AG.

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Media VietJack

Gọi I, J lần lượt là trung điểm của AB, AC.

Khi đó MA+MB=2MIMA+MC=2MJ.

Theo bài ta có MA+MB=MA+MC

2MI=2MJMI=MJ.

Suy ra M nằm trên đường trung trực của đoạn thẳng IJ.

Vậy tập hợp các điểm M thỏa mãn MA+MB=MA+MC là đường trung trực của đoạn thẳng IJ.

Mà I, J lần lượt là trung điểm của AB, AC nên IJ là đường trung bình của tam giác ABC.

Do đó IJ // BC.

Suy ra tập hợp các điểm M là đường trung trực của đoạn thẳng BC.

Vậy tập hợp các điểm M là đường trung trực của đoạn thẳng BC.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC, gọi M là điểm bất kì thỏa mãn MA+MB+MC=3. Hỏi có bao nhiêu điểm M thỏa mãn đẳng thức trên?

Xem đáp án » 19/01/2024 61

Câu 2:

Cho tam giác đều ABC cạnh a. Biết rằng tập hợp các điểm M thỏa mãn đẳng thức 2MA+3MB+4MC=MBMA là đường tròn cố định có bán kính R. Tính bán kính R theo a.

Xem đáp án » 19/01/2024 55

Câu 3:

Cho hình chữ nhật ABCD, điểm M bất kì và số thực k dương. Biết điểm M thỏa mãn đẳng thức MA+MB+MC+MD=k. Quỹ tích của điểm M là

Xem đáp án » 19/01/2024 49

Câu 4:

Cho ba điểm A, B, C phân biệt và không thẳng hàng, gọi M là điểm thỏa mãn MA=xMB+yMC. Giá trị của x + y bằng

Xem đáp án » 19/01/2024 47

Câu hỏi mới nhất

Xem thêm »
Xem thêm »