Câu hỏi:

19/01/2024 55

Cho tam giác đều ABC cạnh a. Biết rằng tập hợp các điểm M thỏa mãn đẳng thức 2MA+3MB+4MC=MBMA là đường tròn cố định có bán kính R. Tính bán kính R theo a.

A. R=a3;

B. R=a9;

Đáp án chính xác

C. R=a2;

D. R=a6.

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là : B 

Ta có: 2MA+3MB+4MC

=2MI+IA+3MI+IB+4MI+IC.

=9MI+2IA+3IB+4IC

Ta chọn điểm I sao cho 2IA+3IB+4IC=0

3IA+IB+IC+ICIA=0.    (1)

Gọi G là trọng tâm của tam giác ABC.

Khi đó IA+IB+IC=3IG              (2)

Thay (2) vào (1) ta được: 9IG+ICIA=0

9IG+AI+IC=0

9IG+AC=09IG=CA       (3)

Do đó 2MA+3MB+4MC=MBMA

9MI+2IA+3IB+4IC=AB

9MI=AB  (do 2IA+3IB+4IC=0)

9MI=ABIM=AB9

Vì I là điểm cố định thỏa mãn (3) nên tập hợp các điểm M cần tìm là đường tròn tâm I, bán kính R=AB9=a9. 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác đều ABC cạnh bằng a, G là trọng tâm tam giác ABC. Tập hợp các điểm M thỏa mãn MA+MB=MA+MC là

Xem đáp án » 19/01/2024 62

Câu 2:

Cho tam giác ABC, gọi M là điểm bất kì thỏa mãn MA+MB+MC=3. Hỏi có bao nhiêu điểm M thỏa mãn đẳng thức trên?

Xem đáp án » 19/01/2024 60

Câu 3:

Cho hình chữ nhật ABCD, điểm M bất kì và số thực k dương. Biết điểm M thỏa mãn đẳng thức MA+MB+MC+MD=k. Quỹ tích của điểm M là

Xem đáp án » 19/01/2024 49

Câu 4:

Cho ba điểm A, B, C phân biệt và không thẳng hàng, gọi M là điểm thỏa mãn MA=xMB+yMC. Giá trị của x + y bằng

Xem đáp án » 19/01/2024 47

Câu hỏi mới nhất

Xem thêm »
Xem thêm »