Cho tam giác ABC và tam giác A'B'C' có các kích thước như Hình 1. Trên cạnh AB và AC của tam giác ABC lần lượt lấy hai điểm M, N sao cho AM = 2 cm, AN = 3 cm.
12
31/10/2024
Cho tam giác ABC và tam giác A'B'C' có các kích thước như Hình 1. Trên cạnh AB và AC của tam giác ABC lần lượt lấy hai điểm M, N sao cho AM = 2 cm, AN = 3 cm.
a) So sánh các tỉ số \[\frac{{A'B'}}{{AB}},\;\frac{{A'C'}}{{AC}},\;\frac{{B'C'}}{{BC}}\].
b) Tính độ dài đoạn thẳng MN.
c) Em có nhận xét gì về mối quan hệ giữa các tam giác ABC, AMN và A'B'C'.
Trả lời
Lời giải:
a) Ta có: \[\frac{{A'B'}}{{AB}} = \frac{2}{6} = \frac{1}{3}\];
\[\frac{{A'C'}}{{AC}} = \frac{3}{9} = \frac{1}{3}\];
\[\frac{{B'C'}}{{BC}} = \frac{4}{{12}} = \frac{1}{3}\].
Do đó \[\frac{{A'B'}}{{AB}} = \;\frac{{A'C'}}{{AC}} = \;\frac{{B'C'}}{{BC}} = \frac{1}{3}\].
b) Tam giác ABC có \[\frac{{AM}}{{AB}} = \frac{{AN}}{{AC}} = \frac{1}{3}\], theo định lí Thalès đảo suy ra MN // BC.
Khi đó ΔAMN ᔕ ΔABC nên \[\frac{{AM}}{{AB}} = \frac{{AN}}{{AC}} = \frac{{MN}}{{BC}} = \frac{1}{3}\] suy ra MN = 4.
c) Xét tam giác AMN và A'B'C' có:
• MN = B'C' = 4;
• AM = A'B' = 2;
• AN = A'C' = 3.
Suy ra ΔAMN = ΔA′B′C′ (c.c.c).
Nhận xét: ΔAMN = ΔA′B′C′, ΔA′B′C′ ᔕ ΔABC và ΔAMN ᔕ ΔABC.