Cho tam giác ABC và một điểm O nằm trong tam giác đó. Gọi M, N, P lần lượt là trung điểm

Cho tam giác ABC và một điểm O nằm trong tam giác đó. Gọi M, N, P lần lượt là trung điểm của các đoạn OA, OB, OC. Khi đó tam giác MNP đồng dạng với tam giác nào?

A. Tam giác ABC;

B. Tam giác OMN;

C. Tam giác OBC;

D. Tam giác OAB.

Trả lời

Hướng dẫn giải:

Đáp án đúng là: A

Cho tam giác ABC và một điểm O nằm trong tam giác đó. Gọi M, N, P lần lượt là trung điểm (ảnh 1)

Xét tam giác OAB có:

M là trung điểm OA, N là trung điểm OB.

Suy ra MN là đường trung bình của tam giác OAB.

Suy ra MN=12AB hay MNAB=12 (1).

Xét tam giác OAC có:

M là trung điểm OA, P là trung điểm OC.

Suy ra MP là đường trung bình của tam giác OAC.

Suy ra MP=12AC hay MPAC=12 (2).

Xét tam giác OBC có:

N là trung điểm OB, P là trung điểm OC.

Suy ra NP là đường trung bình của tam giác OBC.

Suy ra NP=12BC hay NPBC=12 (3).

Từ (1), (2), (3) suy ra MNAB=MPAC=NPBC.

Xét hai tam giác ABC và MNP có MNAB=MPAC=NPBC.

Suy ra ΔABC ΔMNP (c – c – c).

Câu hỏi cùng chủ đề

Xem tất cả