Cho tam giác ABC nhọn có hai đường cao BE, CF cắt nhau tại H. Chứng minh rằng ΔAEB ᔕ ΔAFC
Bài 14 trang 86 Toán 8 Tập 2: Cho tam giác ABC nhọn có hai đường cao BE, CF cắt nhau tại H. Chứng minh rằng
a) ΔAEB ᔕ ΔAFC.
b) .
c) ΔHEF ᔕ ΔHCB.
Bài 14 trang 86 Toán 8 Tập 2: Cho tam giác ABC nhọn có hai đường cao BE, CF cắt nhau tại H. Chứng minh rằng
a) ΔAEB ᔕ ΔAFC.
b) .
c) ΔHEF ᔕ ΔHCB.
a) Xét tam giác vuông AEB và AFC có:
chung
Suy ra ΔAEB ᔕ ΔAFC (g.g)
b) Xét tam giác vuông HCE và HBF ta có:
(hai góc đối đỉnh)
Suy ra ΔHCE ᔕ ΔHBF (g.g)
Nên hay
c) Xét tam giác HEF và HCB ta có:
(cmt)
(hai góc đối đỉnh)
Suy ra ΔHEF ᔕ ΔHCB (c.g.c).
Xem thêm các bài giải SGK Toán lớp 8 Chân trời sáng tạo hay, chi tiết khác:
Bài 3: Các trường hợp đồng dạng của hai tam giác vuông
Bài 1: Mô tả xác suất bằng tỉ số