Cho hình thang ABCD (AB // CD), biết góc ADB = góc DCB  (Hình 2a). Chứng minh rằng BD2 = AB.CD

Bài 10 trang 85 Toán 8 Tập 2: 

a) Cho hình thang ABCD (AB // CD), biết  ADB^=DCB^ (Hình 2a). Chứng minh rằng BD2 = AB.CD.

b) Cho hình thang EFGH (EF // GH), HEF^=HFG^ , EF = 9 m, GH = 16 m (Hình 2b). Tính độ dài x của HF.

Bài 10 trang 85 Toán 8 Tập 2 Chân trời sáng tạo | Giải Toán 8

Trả lời

a) Xét ΔABD và ΔBDC có:

ADB^=DCB^ (gt)

ABD^=BDC^ (AB // CD, hai góc so le trong)

Do đso ΔABD ᔕ ΔBDC (g.g)

Suy ra ABBD=BDCD  (các cạnh tương ứng).

Vậy BD2 = AB.CD (đpcm).

b) Tương tự câu a, ta có: EHG^=FGH^

Xét tam giác EFH và FHG ta có:

EHG^=FGH^

HEF^=HFG^

Do đó ΔEFH ᔕ ΔFHG (g.g)

Suy ra EFHF=HFGH (các cạnh tương ứng).

Khi đó HF2 = EF.GH = 9.16 = 144 nên HF = 12 cm.

Xem thêm các bài giải SGK Toán lớp 8 Chân trời sáng tạo hay, chi tiết khác:

Bài 3: Các trường hợp đồng dạng của hai tam giác vuông

Bài 4: Hai hình đồng dạng

Bài tập cuối chương 8

Bài 1: Mô tả xác suất bằng tỉ số

Bài 2: Xác suất lí thuyết và xác suất thực nghiệm

Bài tập cuối chương 9

Câu hỏi cùng chủ đề

Xem tất cả