Cho tam giác ABC có đường cao AH. Gọi I là trung điểm của AC
387
05/10/2023
Bài 3 trang 87 Toán 8 Tập 1: Cho tam giác ABC có đường cao AH. Gọi I là trung điểm của AC, E là điểm đối xứng với H qua I. Gọi M, N lần lượt là trung điểm của HC, CE. Các đường thẳng AM, AN cắt HE tại G và K.
a) Chứng minh tứ giác AHCE là hình chữ nhật.
b) Chứng minh HG = GK = KE.
Trả lời
a) Do E là điểm đối xứng với H qua I nên I là trung điểm của HE.
Tứ giác AHCE có hai đường chéo AC và HE cắt nhau tại trung điểm I của mỗi đường nên là hình bình hành.
Lại có nên hình bình hành AHCE là hình chữ nhật.
b) Xét DAHC có AM, HI là hai đường trung tuyến cắt nhau tại G nên G là trọng tâm của DAHC.
Suy ra và .
Chứng minh tương tự đối với DAEC có K là trọng tâm của DAEC.
Suy ra và .
Ta có: , và HI = EI nên .
Lại có: và nên
Mặt khác .
Vậy HG = GK = KE.
Xem thêm lời giải bài tập SGK Toán lớp 8 Chân trời sáng tạo hay, chi tiết khác:
Bài 3: Hình thang – Hình thang cân
Bài 4: Hình bình hành – Hình thoi
Bài 5: Hình chữ nhật – Hình vuông
Bài tập cuối chương 3