Cho tam giác ABC có AB = AC. Gọi D là trung điểm của BC. Vẽ CM vuông góc với AB tại M, BN vuông góc với AC tại N. Chứng minh AM = AN

Bài 39 trang 81 SBT Toán 7 Tập 2Cho tam giác ABC có AB = AC. Gọi D là trung điểm của BC. Vẽ CM vuông góc với AB tại M, BN vuông góc với AC tại N. Chứng minh AM = AN.

Trả lời

Sách bài tập Toán 7 Bài 6 (Cánh diều): Trường hợp bằng nhau thứ ba của tam giác: góc – cạnh – góc  (ảnh 1) 

Xét ABD và ACD có:

AB = AC (giả thiết),

BD = CD (do D là trung điểm của BC),

AD là cạnh chung

Do đó ∆ABD = ∆ACD (c.c.c).

Suy ra ABD^=ACD^ hay MBC^=NCB^.

Xét BMC và CNB có:

BMC^=CNB^=90°,

BC là cạnh chung,

MBC^=NCB^ (chứng minh trên),

Do đó BMC và CNB (cạnh huyền – góc nhọn).

Suy ra BM = CN (hai cạnh tương ứng).

Ta có AB = AM + MB, AC = AN + NC.

Mà AB = AC, BM = CN.

Suy ra AM = AN.

Vậy AM = AN.

Xem thêm lời giải bài tập Toán lớp 7 Kết nối tri thức hay, chi tiết khác:

Bài 4. Trường hợp bằng nhau thứ nhất của tam giác: cạnh – cạnh – cạnh

Bài 5. Trường hợp bằng nhau thứ hai của tam giác: cạnh – góc – cạnh

Bài 6. Trường hợp bằng nhau thứ ba của tam giác:

Bài 7. Tam giác cân

Bài 8. Đường vuông góc và đường xiên

Bài 9. Đường trung trực của một đoạn thẳng

Câu hỏi cùng chủ đề

Xem tất cả