Cho n là số nguyên dương chẵn bất kì, chứng minh 1/1!( n - 1)! + 1/3!( n - 3)! + 1/5!( n - 5)! + ... + 1/( n - 1)!1! = 2^n - 1/n!

Cho n là số nguyên dương chẵn bất kì, chứng minh

\[\frac{1}{{1!\left( {n - 1} \right)!}} + \frac{1}{{3!\left( {n - 3} \right)!}} + \frac{1}{{5!\left( {n - 5} \right)!}} + ... + \frac{1}{{\left( {n - 1} \right)!1!}} = \frac{{{2^{n - 1}}}}{{n!}}\]

Trả lời

Phương pháp:

Sử dụng khai triển\[{\left( {x + 1} \right)^n}\], thay \[x = 1\]\[x = - 1.\]

Cách giải:

\[\frac{1}{{1!\left( {n - 1} \right)!}} + \frac{1}{{3!\left( {n - 3} \right)!}} + \frac{1}{{5!\left( {n - 5} \right)!}} + ... + \frac{1}{{\left( {n - 1} \right)!1!}} = \frac{{{2^{n - 1}}}}{{n!}}\]

\[ \Leftrightarrow \frac{{n!}}{{1!\left( {n - 1} \right)!}} + \frac{{n!}}{{3!\left( {n - 3} \right)!}} + \frac{{n!}}{{5!\left( {n - 5} \right)!}} + ... + \frac{{n!}}{{\left( {n - 1} \right)!1!}} = {2^{n - 1}}\]

\[ \Leftrightarrow C_n^1 + C_n^3 + C_n^5 + ... + C_n^{n - 1} = {2^{n - 1}}\]

Xét khai triển\[{\left( {x + 1} \right)^n} = \sum\limits_{k = 0}^n {C_n^k{x^k}.} \]

Thay \[x = 1\]ta có\[{\left( {1 + 1} \right)^n} = \sum\limits_{k = 0}^n {C_n^k} \Leftrightarrow {2^n} = C_n^0 + C_n^1 + C_n^2 + ... + C_n^{n - 1} + C_n^n\,\,\,\left( 1 \right).\]

Thay \[x = - 1\]ta có\[{\left( { - 1 + 1} \right)^n} = \sum\limits_{k = 0}^n {C_n^k} {\left( { - 1} \right)^k} \Leftrightarrow 0 = C_n^0 - C_n^1 + C_n^2 + ... - C_n^{n - 1} + C_n^n\,\,\,\left( 2 \right)\]

Trừ vế theo vế của (1) và (2) ta có\[{2^n} = 2\left( {C_n^1 + C_n^3 + ... + C_n^{n - 1}} \right) \Leftrightarrow C_n^1 + C_n^3 + ... + C_n^{n - 1} = {2^{n - 1}}.\]

Câu hỏi cùng chủ đề

Xem tất cả