Cho khối chóp S.ABCD có đáy là hình bình hành AB = 3, AD = 4, góc BAD = 120 độ. Cạnh bên SA = 2 căn 3 và vuông góc với mặt phẳng (ABCD).

Cho khối chóp S.ABCD có đáy là hình bình hành AB = 3, AD = 4, BAD^=120° . Cạnh bên SA=23  và vuông góc với mặt phẳng (ABCD). Gọi M, N, P lần lượt là trung điểm các cạnh SA, SDBC, α  là góc giữa hai mặt phẳng (SAC)(MNP). Khẳng định nào sau đây là khẳng định đúng?

A. α0°;30°

B. α30°;45°

C. α45°;60°

D. α60°;90°

Trả lời

Đáp án đúng là: D

Cho khối chóp S.ABCD có đáy là hình bình hành AB = 3, AD = 4, góc BAD = 120 độ. Cạnh bên SA = 2 căn 3 và vuông góc với mặt phẳng (ABCD).  (ảnh 1)

Với mọi điểm PBC ta có MNPBCNMMBC , do đó góc giữa hai mặt phẳng (SAC) và (MNP) bằng góc giữa hai mặt phẳng (SAC) và (MBC).

Gọi H là hình chiếu của B lên AC thì BHSAC  nên ΔMHC  là hình chiếu của ΔMBC  lên (SAC).

Do đó SΔMHC=SΔMBC.cosα ; MBC,SAC=α .

Gọi K là hình chiếu của A lên BC thì MKBC .

Ta có AK=AB.sinABK^=3.sin60°=332

MK=MA2+AK2=392SΔMBC=12BC.MK=39

.

Ta có KB=AB.cosABK^=32KC=52

AC=AK2+KC2=13BH=BC.AKAC=63913

CH=BC2BH2=101313SΔMHC=12CH.MA=53913

Suy ra cosα=SΔMHCSΔMBC=5391339=513α60°;90° .

Câu hỏi cùng chủ đề

Xem tất cả